.TH "complexGEcomputational" 3 "Sun Nov 27 2022" "Version 3.11.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
complexGEcomputational \- complex
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "subroutine \fBcgebak\fP (JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)"
.br
.RI "\fBCGEBAK\fP "
.ti -1c
.RI "subroutine \fBcgebal\fP (JOB, N, A, LDA, ILO, IHI, SCALE, INFO)"
.br
.RI "\fBCGEBAL\fP "
.ti -1c
.RI "subroutine \fBcgebd2\fP (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO)"
.br
.RI "\fBCGEBD2\fP reduces a general matrix to bidiagonal form using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBcgebrd\fP (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)"
.br
.RI "\fBCGEBRD\fP "
.ti -1c
.RI "subroutine \fBcgecon\fP (NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)"
.br
.RI "\fBCGECON\fP "
.ti -1c
.RI "subroutine \fBcgeequ\fP (M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)"
.br
.RI "\fBCGEEQU\fP "
.ti -1c
.RI "subroutine \fBcgeequb\fP (M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)"
.br
.RI "\fBCGEEQUB\fP "
.ti -1c
.RI "subroutine \fBcgehd2\fP (N, ILO, IHI, A, LDA, TAU, WORK, INFO)"
.br
.RI "\fBCGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBcgehrd\fP (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)"
.br
.RI "\fBCGEHRD\fP "
.ti -1c
.RI "subroutine \fBcgelq2\fP (M, N, A, LDA, TAU, WORK, INFO)"
.br
.RI "\fBCGELQ2\fP computes the LQ factorization of a general rectangular matrix using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBcgelqf\fP (M, N, A, LDA, TAU, WORK, LWORK, INFO)"
.br
.RI "\fBCGELQF\fP "
.ti -1c
.RI "subroutine \fBcgemqrt\fP (SIDE, TRANS, M, N, K, NB, V, LDV, T, LDT, C, LDC, WORK, INFO)"
.br
.RI "\fBCGEMQRT\fP "
.ti -1c
.RI "subroutine \fBcgeql2\fP (M, N, A, LDA, TAU, WORK, INFO)"
.br
.RI "\fBCGEQL2\fP computes the QL factorization of a general rectangular matrix using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBcgeqlf\fP (M, N, A, LDA, TAU, WORK, LWORK, INFO)"
.br
.RI "\fBCGEQLF\fP "
.ti -1c
.RI "subroutine \fBcgeqp3\fP (M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, INFO)"
.br
.RI "\fBCGEQP3\fP "
.ti -1c
.RI "subroutine \fBcgeqr2\fP (M, N, A, LDA, TAU, WORK, INFO)"
.br
.RI "\fBCGEQR2\fP computes the QR factorization of a general rectangular matrix using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBcgeqr2p\fP (M, N, A, LDA, TAU, WORK, INFO)"
.br
.RI "\fBCGEQR2P\fP computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBcgeqrf\fP (M, N, A, LDA, TAU, WORK, LWORK, INFO)"
.br
.RI "\fBCGEQRF\fP "
.ti -1c
.RI "subroutine \fBcgeqrfp\fP (M, N, A, LDA, TAU, WORK, LWORK, INFO)"
.br
.RI "\fBCGEQRFP\fP "
.ti -1c
.RI "subroutine \fBcgeqrt\fP (M, N, NB, A, LDA, T, LDT, WORK, INFO)"
.br
.RI "\fBCGEQRT\fP "
.ti -1c
.RI "subroutine \fBcgeqrt2\fP (M, N, A, LDA, T, LDT, INFO)"
.br
.RI "\fBCGEQRT2\fP computes a QR factorization of a general real or complex matrix using the compact WY representation of Q\&. "
.ti -1c
.RI "recursive subroutine \fBcgeqrt3\fP (M, N, A, LDA, T, LDT, INFO)"
.br
.RI "\fB CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q\&. \fP "
.ti -1c
.RI "subroutine \fBcgerfs\fP (TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)"
.br
.RI "\fBCGERFS\fP "
.ti -1c
.RI "subroutine \fBcgerfsx\fP (TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)"
.br
.RI "\fBCGERFSX\fP "
.ti -1c
.RI "subroutine \fBcgerq2\fP (M, N, A, LDA, TAU, WORK, INFO)"
.br
.RI "\fBCGERQ2\fP computes the RQ factorization of a general rectangular matrix using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBcgerqf\fP (M, N, A, LDA, TAU, WORK, LWORK, INFO)"
.br
.RI "\fBCGERQF\fP "
.ti -1c
.RI "subroutine \fBcgesvj\fP (JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO)"
.br
.RI "\fB CGESVJ \fP "
.ti -1c
.RI "subroutine \fBcgetf2\fP (M, N, A, LDA, IPIV, INFO)"
.br
.RI "\fBCGETF2\fP computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm)\&. "
.ti -1c
.RI "subroutine \fBcgetrf\fP (M, N, A, LDA, IPIV, INFO)"
.br
.RI "\fBCGETRF\fP "
.ti -1c
.RI "recursive subroutine \fBcgetrf2\fP (M, N, A, LDA, IPIV, INFO)"
.br
.RI "\fBCGETRF2\fP "
.ti -1c
.RI "subroutine \fBcgetri\fP (N, A, LDA, IPIV, WORK, LWORK, INFO)"
.br
.RI "\fBCGETRI\fP "
.ti -1c
.RI "subroutine \fBcgetrs\fP (TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)"
.br
.RI "\fBCGETRS\fP "
.ti -1c
.RI "subroutine \fBchgeqz\fP (JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO)"
.br
.RI "\fBCHGEQZ\fP "
.ti -1c
.RI "subroutine \fBcla_geamv\fP (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)"
.br
.RI "\fBCLA_GEAMV\fP computes a matrix-vector product using a general matrix to calculate error bounds\&. "
.ti -1c
.RI "real function \fBcla_gercond_c\fP (TRANS, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK)"
.br
.RI "\fBCLA_GERCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices\&. "
.ti -1c
.RI "real function \fBcla_gercond_x\fP (TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)"
.br
.RI "\fBCLA_GERCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for general matrices\&. "
.ti -1c
.RI "subroutine \fBcla_gerfsx_extended\fP (PREC_TYPE, TRANS_TYPE, N, NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERRS_N, ERRS_C, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO)"
.br
.RI "\fBCLA_GERFSX_EXTENDED\fP "
.ti -1c
.RI "real function \fBcla_gerpvgrw\fP (N, NCOLS, A, LDA, AF, LDAF)"
.br
.RI "\fBCLA_GERPVGRW\fP multiplies a square real matrix by a complex matrix\&. "
.ti -1c
.RI "recursive subroutine \fBclaqz0\fP (WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, REC, INFO)"
.br
.RI "\fBCLAQZ0\fP "
.ti -1c
.RI "subroutine \fBclaqz1\fP (ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B, LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ)"
.br
.RI "\fBCLAQZ1\fP "
.ti -1c
.RI "recursive subroutine \fBclaqz2\fP (ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHA, BETA, QC, LDQC, ZC, LDZC, WORK, LWORK, RWORK, REC, INFO)"
.br
.RI "\fBCLAQZ2\fP "
.ti -1c
.RI "subroutine \fBclaqz3\fP (ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS, NBLOCK_DESIRED, ALPHA, BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, QC, LDQC, ZC, LDZC, WORK, LWORK, INFO)"
.br
.RI "\fBCLAQZ3\fP "
.ti -1c
.RI "subroutine \fBclaunhr_col_getrfnp\fP (M, N, A, LDA, D, INFO)"
.br
.RI "\fBCLAUNHR_COL_GETRFNP\fP "
.ti -1c
.RI "recursive subroutine \fBclaunhr_col_getrfnp2\fP (M, N, A, LDA, D, INFO)"
.br
.RI "\fBCLAUNHR_COL_GETRFNP2\fP "
.ti -1c
.RI "subroutine \fBctgevc\fP (SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO)"
.br
.RI "\fBCTGEVC\fP "
.ti -1c
.RI "subroutine \fBctgexc\fP (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO)"
.br
.RI "\fBCTGEXC\fP "
.in -1c
.SH "Detailed Description"
.PP 
This is the group of complex computational functions for GE matrices 
.SH "Function Documentation"
.PP 
.SS "subroutine cgebak (character JOB, character SIDE, integer N, integer ILO, integer IHI, real, dimension( * ) SCALE, integer M, complex, dimension( ldv, * ) V, integer LDV, integer INFO)"

.PP
\fBCGEBAK\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEBAK forms the right or left eigenvectors of a complex general
 matrix by backward transformation on the computed eigenvectors of the
 balanced matrix output by CGEBAL\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOB\fP 
.PP
.nf
          JOB is CHARACTER*1
          Specifies the type of backward transformation required:
          = 'N': do nothing, return immediately;
          = 'P': do backward transformation for permutation only;
          = 'S': do backward transformation for scaling only;
          = 'B': do backward transformations for both permutation and
                 scaling\&.
          JOB must be the same as the argument JOB supplied to CGEBAL\&.
.fi
.PP
.br
\fISIDE\fP 
.PP
.nf
          SIDE is CHARACTER*1
          = 'R':  V contains right eigenvectors;
          = 'L':  V contains left eigenvectors\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of rows of the matrix V\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER
          The integers ILO and IHI determined by CGEBAL\&.
          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&.
.fi
.PP
.br
\fISCALE\fP 
.PP
.nf
          SCALE is REAL array, dimension (N)
          Details of the permutation and scaling factors, as returned
          by CGEBAL\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of columns of the matrix V\&.  M >= 0\&.
.fi
.PP
.br
\fIV\fP 
.PP
.nf
          V is COMPLEX array, dimension (LDV,M)
          On entry, the matrix of right or left eigenvectors to be
          transformed, as returned by CHSEIN or CTREVC\&.
          On exit, V is overwritten by the transformed eigenvectors\&.
.fi
.PP
.br
\fILDV\fP 
.PP
.nf
          LDV is INTEGER
          The leading dimension of the array V\&. LDV >= max(1,N)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgebal (character JOB, integer N, complex, dimension( lda, * ) A, integer LDA, integer ILO, integer IHI, real, dimension( * ) SCALE, integer INFO)"

.PP
\fBCGEBAL\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEBAL balances a general complex matrix A\&.  This involves, first,
 permuting A by a similarity transformation to isolate eigenvalues
 in the first 1 to ILO-1 and last IHI+1 to N elements on the
 diagonal; and second, applying a diagonal similarity transformation
 to rows and columns ILO to IHI to make the rows and columns as
 close in norm as possible\&.  Both steps are optional\&.

 Balancing may reduce the 1-norm of the matrix, and improve the
 accuracy of the computed eigenvalues and/or eigenvectors\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOB\fP 
.PP
.nf
          JOB is CHARACTER*1
          Specifies the operations to be performed on A:
          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1\&.0
                  for i = 1,\&.\&.\&.,N;
          = 'P':  permute only;
          = 'S':  scale only;
          = 'B':  both permute and scale\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the input matrix A\&.
          On exit,  A is overwritten by the balanced matrix\&.
          If JOB = 'N', A is not referenced\&.
          See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
 
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER
          ILO and IHI are set to integers such that on exit
          A(i,j) = 0 if i > j and j = 1,\&.\&.\&.,ILO-1 or I = IHI+1,\&.\&.\&.,N\&.
          If JOB = 'N' or 'S', ILO = 1 and IHI = N\&.
.fi
.PP
.br
\fISCALE\fP 
.PP
.nf
          SCALE is REAL array, dimension (N)
          Details of the permutations and scaling factors applied to
          A\&.  If P(j) is the index of the row and column interchanged
          with row and column j and D(j) is the scaling factor
          applied to row and column j, then
          SCALE(j) = P(j)    for j = 1,\&.\&.\&.,ILO-1
                   = D(j)    for j = ILO,\&.\&.\&.,IHI
                   = P(j)    for j = IHI+1,\&.\&.\&.,N\&.
          The order in which the interchanges are made is N to IHI+1,
          then 1 to ILO-1\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The permutations consist of row and column interchanges which put
  the matrix in the form

             ( T1   X   Y  )
     P A P = (  0   B   Z  )
             (  0   0   T2 )

  where T1 and T2 are upper triangular matrices whose eigenvalues lie
  along the diagonal\&.  The column indices ILO and IHI mark the starting
  and ending columns of the submatrix B\&. Balancing consists of applying
  a diagonal similarity transformation inv(D) * B * D to make the
  1-norms of each row of B and its corresponding column nearly equal\&.
  The output matrix is

     ( T1     X*D          Y    )
     (  0  inv(D)*B*D  inv(D)*Z )\&.
     (  0      0           T2   )

  Information about the permutations P and the diagonal matrix D is
  returned in the vector SCALE\&.

  This subroutine is based on the EISPACK routine CBAL\&.

  Modified by Tzu-Yi Chen, Computer Science Division, University of
    California at Berkeley, USA
.fi
.PP
 
.RE
.PP

.SS "subroutine cgebd2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) D, real, dimension( * ) E, complex, dimension( * ) TAUQ, complex, dimension( * ) TAUP, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGEBD2\fP reduces a general matrix to bidiagonal form using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEBD2 reduces a complex general m by n matrix A to upper or lower
 real bidiagonal form B by a unitary transformation: Q**H * A * P = B\&.

 If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows in the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns in the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n general matrix to be reduced\&.
          On exit,
          if m >= n, the diagonal and the first superdiagonal are
            overwritten with the upper bidiagonal matrix B; the
            elements below the diagonal, with the array TAUQ, represent
            the unitary matrix Q as a product of elementary
            reflectors, and the elements above the first superdiagonal,
            with the array TAUP, represent the unitary matrix P as
            a product of elementary reflectors;
          if m < n, the diagonal and the first subdiagonal are
            overwritten with the lower bidiagonal matrix B; the
            elements below the first subdiagonal, with the array TAUQ,
            represent the unitary matrix Q as a product of
            elementary reflectors, and the elements above the diagonal,
            with the array TAUP, represent the unitary matrix P as
            a product of elementary reflectors\&.
          See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fID\fP 
.PP
.nf
          D is REAL array, dimension (min(M,N))
          The diagonal elements of the bidiagonal matrix B:
          D(i) = A(i,i)\&.
.fi
.PP
.br
\fIE\fP 
.PP
.nf
          E is REAL array, dimension (min(M,N)-1)
          The off-diagonal elements of the bidiagonal matrix B:
          if m >= n, E(i) = A(i,i+1) for i = 1,2,\&.\&.\&.,n-1;
          if m < n, E(i) = A(i+1,i) for i = 1,2,\&.\&.\&.,m-1\&.
.fi
.PP
.br
\fITAUQ\fP 
.PP
.nf
          TAUQ is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors which
          represent the unitary matrix Q\&. See Further Details\&.
.fi
.PP
.br
\fITAUP\fP 
.PP
.nf
          TAUP is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors which
          represent the unitary matrix P\&. See Further Details\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (max(M,N))
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrices Q and P are represented as products of elementary
  reflectors:

  If m >= n,

     Q = H(1) H(2) \&. \&. \&. H(n)  and  P = G(1) G(2) \&. \&. \&. G(n-1)

  Each H(i) and G(i) has the form:

     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

  where tauq and taup are complex scalars, and v and u are complex
  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i)\&.

  If m < n,

     Q = H(1) H(2) \&. \&. \&. H(m-1)  and  P = G(1) G(2) \&. \&. \&. G(m)

  Each H(i) and G(i) has the form:

     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

  where tauq and taup are complex scalars, v and u are complex vectors;
  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
  tauq is stored in TAUQ(i) and taup in TAUP(i)\&.

  The contents of A on exit are illustrated by the following examples:

  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
    (  v1  v2  v3  v4  v5 )

  where d and e denote diagonal and off-diagonal elements of B, vi
  denotes an element of the vector defining H(i), and ui an element of
  the vector defining G(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgebrd (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) D, real, dimension( * ) E, complex, dimension( * ) TAUQ, complex, dimension( * ) TAUP, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGEBRD\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEBRD reduces a general complex M-by-N matrix A to upper or lower
 bidiagonal form B by a unitary transformation: Q**H * A * P = B\&.

 If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows in the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns in the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N general matrix to be reduced\&.
          On exit,
          if m >= n, the diagonal and the first superdiagonal are
            overwritten with the upper bidiagonal matrix B; the
            elements below the diagonal, with the array TAUQ, represent
            the unitary matrix Q as a product of elementary
            reflectors, and the elements above the first superdiagonal,
            with the array TAUP, represent the unitary matrix P as
            a product of elementary reflectors;
          if m < n, the diagonal and the first subdiagonal are
            overwritten with the lower bidiagonal matrix B; the
            elements below the first subdiagonal, with the array TAUQ,
            represent the unitary matrix Q as a product of
            elementary reflectors, and the elements above the diagonal,
            with the array TAUP, represent the unitary matrix P as
            a product of elementary reflectors\&.
          See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fID\fP 
.PP
.nf
          D is REAL array, dimension (min(M,N))
          The diagonal elements of the bidiagonal matrix B:
          D(i) = A(i,i)\&.
.fi
.PP
.br
\fIE\fP 
.PP
.nf
          E is REAL array, dimension (min(M,N)-1)
          The off-diagonal elements of the bidiagonal matrix B:
          if m >= n, E(i) = A(i,i+1) for i = 1,2,\&.\&.\&.,n-1;
          if m < n, E(i) = A(i+1,i) for i = 1,2,\&.\&.\&.,m-1\&.
.fi
.PP
.br
\fITAUQ\fP 
.PP
.nf
          TAUQ is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors which
          represent the unitary matrix Q\&. See Further Details\&.
.fi
.PP
.br
\fITAUP\fP 
.PP
.nf
          TAUP is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors which
          represent the unitary matrix P\&. See Further Details\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The length of the array WORK\&.  LWORK >= max(1,M,N)\&.
          For optimum performance LWORK >= (M+N)*NB, where NB
          is the optimal blocksize\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrices Q and P are represented as products of elementary
  reflectors:

  If m >= n,

     Q = H(1) H(2) \&. \&. \&. H(n)  and  P = G(1) G(2) \&. \&. \&. G(n-1)

  Each H(i) and G(i) has the form:

     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

  where tauq and taup are complex scalars, and v and u are complex
  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i)\&.

  If m < n,

     Q = H(1) H(2) \&. \&. \&. H(m-1)  and  P = G(1) G(2) \&. \&. \&. G(m)

  Each H(i) and G(i) has the form:

     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H

  where tauq and taup are complex scalars, and v and u are complex
  vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i)\&.

  The contents of A on exit are illustrated by the following examples:

  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):

    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
    (  v1  v2  v3  v4  v5 )

  where d and e denote diagonal and off-diagonal elements of B, vi
  denotes an element of the vector defining H(i), and ui an element of
  the vector defining G(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgecon (character NORM, integer N, complex, dimension( lda, * ) A, integer LDA, real ANORM, real RCOND, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer INFO)"

.PP
\fBCGECON\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGECON estimates the reciprocal of the condition number of a general
 complex matrix A, in either the 1-norm or the infinity-norm, using
 the LU factorization computed by CGETRF\&.

 An estimate is obtained for norm(inv(A)), and the reciprocal of the
 condition number is computed as
    RCOND = 1 / ( norm(A) * norm(inv(A)) )\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fINORM\fP 
.PP
.nf
          NORM is CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          The factors L and U from the factorization A = P*L*U
          as computed by CGETRF\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIANORM\fP 
.PP
.nf
          ANORM is REAL
          If NORM = '1' or 'O', the 1-norm of the original matrix A\&.
          If NORM = 'I', the infinity-norm of the original matrix A\&.
.fi
.PP
.br
\fIRCOND\fP 
.PP
.nf
          RCOND is REAL
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(norm(A) * norm(inv(A)))\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (2*N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgeequ (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) R, real, dimension( * ) C, real ROWCND, real COLCND, real AMAX, integer INFO)"

.PP
\fBCGEEQU\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEEQU computes row and column scalings intended to equilibrate an
 M-by-N matrix A and reduce its condition number\&.  R returns the row
 scale factors and C the column scale factors, chosen to try to make
 the largest element in each row and column of the matrix B with
 elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1\&.

 R(i) and C(j) are restricted to be between SMLNUM = smallest safe
 number and BIGNUM = largest safe number\&.  Use of these scaling
 factors is not guaranteed to reduce the condition number of A but
 works well in practice\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          The M-by-N matrix whose equilibration factors are
          to be computed\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIR\fP 
.PP
.nf
          R is REAL array, dimension (M)
          If INFO = 0 or INFO > M, R contains the row scale factors
          for A\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is REAL array, dimension (N)
          If INFO = 0,  C contains the column scale factors for A\&.
.fi
.PP
.br
\fIROWCND\fP 
.PP
.nf
          ROWCND is REAL
          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
          smallest R(i) to the largest R(i)\&.  If ROWCND >= 0\&.1 and
          AMAX is neither too large nor too small, it is not worth
          scaling by R\&.
.fi
.PP
.br
\fICOLCND\fP 
.PP
.nf
          COLCND is REAL
          If INFO = 0, COLCND contains the ratio of the smallest
          C(i) to the largest C(i)\&.  If COLCND >= 0\&.1, it is not
          worth scaling by C\&.
.fi
.PP
.br
\fIAMAX\fP 
.PP
.nf
          AMAX is REAL
          Absolute value of largest matrix element\&.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i,  and i is
                <= M:  the i-th row of A is exactly zero
                >  M:  the (i-M)-th column of A is exactly zero
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgeequb (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) R, real, dimension( * ) C, real ROWCND, real COLCND, real AMAX, integer INFO)"

.PP
\fBCGEEQUB\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEEQUB computes row and column scalings intended to equilibrate an
 M-by-N matrix A and reduce its condition number\&.  R returns the row
 scale factors and C the column scale factors, chosen to try to make
 the largest element in each row and column of the matrix B with
 elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most
 the radix\&.

 R(i) and C(j) are restricted to be a power of the radix between
 SMLNUM = smallest safe number and BIGNUM = largest safe number\&.  Use
 of these scaling factors is not guaranteed to reduce the condition
 number of A but works well in practice\&.

 This routine differs from CGEEQU by restricting the scaling factors
 to a power of the radix\&.  Barring over- and underflow, scaling by
 these factors introduces no additional rounding errors\&.  However, the
 scaled entries' magnitudes are no longer approximately 1 but lie
 between sqrt(radix) and 1/sqrt(radix)\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          The M-by-N matrix whose equilibration factors are
          to be computed\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIR\fP 
.PP
.nf
          R is REAL array, dimension (M)
          If INFO = 0 or INFO > M, R contains the row scale factors
          for A\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is REAL array, dimension (N)
          If INFO = 0,  C contains the column scale factors for A\&.
.fi
.PP
.br
\fIROWCND\fP 
.PP
.nf
          ROWCND is REAL
          If INFO = 0 or INFO > M, ROWCND contains the ratio of the
          smallest R(i) to the largest R(i)\&.  If ROWCND >= 0\&.1 and
          AMAX is neither too large nor too small, it is not worth
          scaling by R\&.
.fi
.PP
.br
\fICOLCND\fP 
.PP
.nf
          COLCND is REAL
          If INFO = 0, COLCND contains the ratio of the smallest
          C(i) to the largest C(i)\&.  If COLCND >= 0\&.1, it is not
          worth scaling by C\&.
.fi
.PP
.br
\fIAMAX\fP 
.PP
.nf
          AMAX is REAL
          Absolute value of largest matrix element\&.  If AMAX is very
          close to overflow or very close to underflow, the matrix
          should be scaled\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i,  and i is
                <= M:  the i-th row of A is exactly zero
                >  M:  the (i-M)-th column of A is exactly zero
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgehd2 (integer N, integer ILO, integer IHI, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEHD2 reduces a complex general matrix A to upper Hessenberg form H
 by a unitary similarity transformation:  Q**H * A * Q = H \&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER

          It is assumed that A is already upper triangular in rows
          and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are normally
          set by a previous call to CGEBAL; otherwise they should be
          set to 1 and N respectively\&. See Further Details\&.
          1 <= ILO <= IHI <= max(1,N)\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the n by n general matrix to be reduced\&.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          elements below the first subdiagonal, with the array TAU,
          represent the unitary matrix Q as a product of elementary
          reflectors\&. See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of (ihi-ilo) elementary
  reflectors

     Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
  exit in A(i+2:ihi,i), and tau in TAU(i)\&.

  The contents of A are illustrated by the following example, with
  n = 7, ilo = 2 and ihi = 6:

  on entry,                        on exit,

  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
  (                         a )    (                          a )

  where a denotes an element of the original matrix A, h denotes a
  modified element of the upper Hessenberg matrix H, and vi denotes an
  element of the vector defining H(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgehrd (integer N, integer ILO, integer IHI, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGEHRD\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEHRD reduces a complex general matrix A to upper Hessenberg form H by
 an unitary similarity transformation:  Q**H * A * Q = H \&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER

          It is assumed that A is already upper triangular in rows
          and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are normally
          set by a previous call to CGEBAL; otherwise they should be
          set to 1 and N respectively\&. See Further Details\&.
          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the N-by-N general matrix to be reduced\&.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          elements below the first subdiagonal, with the array TAU,
          represent the unitary matrix Q as a product of elementary
          reflectors\&. See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details)\&. Elements 1:ILO-1 and IHI:N-1 of TAU are set to
          zero\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (LWORK)
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The length of the array WORK\&.  LWORK >= max(1,N)\&.
          For good performance, LWORK should generally be larger\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of (ihi-ilo) elementary
  reflectors

     Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
  exit in A(i+2:ihi,i), and tau in TAU(i)\&.

  The contents of A are illustrated by the following example, with
  n = 7, ilo = 2 and ihi = 6:

  on entry,                        on exit,

  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
  (                         a )    (                          a )

  where a denotes an element of the original matrix A, h denotes a
  modified element of the upper Hessenberg matrix H, and vi denotes an
  element of the vector defining H(i)\&.

  This file is a slight modification of LAPACK-3\&.0's CGEHRD
  subroutine incorporating improvements proposed by Quintana-Orti and
  Van de Geijn (2006)\&. (See CLAHR2\&.)
.fi
.PP
 
.RE
.PP

.SS "subroutine cgelq2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGELQ2\fP computes the LQ factorization of a general rectangular matrix using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGELQ2 computes an LQ factorization of a complex m-by-n matrix A:

    A = ( L 0 ) *  Q

 where:

    Q is a n-by-n orthogonal matrix;
    L is a lower-triangular m-by-m matrix;
    0 is a m-by-(n-m) zero matrix, if m < n\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix A\&.
          On exit, the elements on and below the diagonal of the array
          contain the m by min(m,n) lower trapezoidal matrix L (L is
          lower triangular if m <= n); the elements above the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (M)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(k)**H \&. \&. \&. H(2)**H H(1)**H, where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
  A(i,i+1:n), and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgelqf (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGELQF\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGELQF computes an LQ factorization of a complex M-by-N matrix A:

    A = ( L 0 ) *  Q

 where:

    Q is a N-by-N orthogonal matrix;
    L is a lower-triangular M-by-M matrix;
    0 is a M-by-(N-M) zero matrix, if M < N\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit, the elements on and below the diagonal of the array
          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
          lower triangular if m <= n); the elements above the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,M)\&.
          For optimum performance LWORK >= M*NB, where NB is the
          optimal blocksize\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(k)**H \&. \&. \&. H(2)**H H(1)**H, where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
  A(i,i+1:n), and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgemqrt (character SIDE, character TRANS, integer M, integer N, integer K, integer NB, complex, dimension( ldv, * ) V, integer LDV, complex, dimension( ldt, * ) T, integer LDT, complex, dimension( ldc, * ) C, integer LDC, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGEMQRT\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEMQRT overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q C            C Q
 TRANS = 'C':    Q**H C            C Q**H

 where Q is a complex orthogonal matrix defined as the product of K
 elementary reflectors:

       Q = H(1) H(2) \&. \&. \&. H(K) = I - V T V**H

 generated using the compact WY representation as returned by CGEQRT\&.

 Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fISIDE\fP 
.PP
.nf
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Conjugate transpose, apply Q**H\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix C\&. M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix C\&. N >= 0\&.
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q\&.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0\&.
.fi
.PP
.br
\fINB\fP 
.PP
.nf
          NB is INTEGER
          The block size used for the storage of T\&.  K >= NB >= 1\&.
          This must be the same value of NB used to generate T
          in CGEQRT\&.
.fi
.PP
.br
\fIV\fP 
.PP
.nf
          V is COMPLEX array, dimension (LDV,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,\&.\&.\&.,k, as returned by
          CGEQRT in the first K columns of its array argument A\&.
.fi
.PP
.br
\fILDV\fP 
.PP
.nf
          LDV is INTEGER
          The leading dimension of the array V\&.
          If SIDE = 'L', LDA >= max(1,M);
          if SIDE = 'R', LDA >= max(1,N)\&.
.fi
.PP
.br
\fIT\fP 
.PP
.nf
          T is COMPLEX array, dimension (LDT,K)
          The upper triangular factors of the block reflectors
          as returned by CGEQRT, stored as a NB-by-N matrix\&.
.fi
.PP
.br
\fILDT\fP 
.PP
.nf
          LDT is INTEGER
          The leading dimension of the array T\&.  LDT >= NB\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is COMPLEX array, dimension (LDC,N)
          On entry, the M-by-N matrix C\&.
          On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q\&.
.fi
.PP
.br
\fILDC\fP 
.PP
.nf
          LDC is INTEGER
          The leading dimension of the array C\&. LDC >= max(1,M)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array\&. The dimension of WORK is
           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgeql2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGEQL2\fP computes the QL factorization of a general rectangular matrix using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQL2 computes a QL factorization of a complex m by n matrix A:
 A = Q * L\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix A\&.
          On exit, if m >= n, the lower triangle of the subarray
          A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
          if m <= n, the elements on and below the (n-m)-th
          superdiagonal contain the m by n lower trapezoidal matrix L;
          the remaining elements, with the array TAU, represent the
          unitary matrix Q as a product of elementary reflectors
          (see Further Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(k) \&. \&. \&. H(2) H(1), where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
  A(1:m-k+i-1,n-k+i), and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgeqlf (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGEQLF\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQLF computes a QL factorization of a complex M-by-N matrix A:
 A = Q * L\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit,
          if m >= n, the lower triangle of the subarray
          A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
          if m <= n, the elements on and below the (n-m)-th
          superdiagonal contain the M-by-N lower trapezoidal matrix L;
          the remaining elements, with the array TAU, represent the
          unitary matrix Q as a product of elementary reflectors
          (see Further Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,N)\&.
          For optimum performance LWORK >= N*NB, where NB is
          the optimal blocksize\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(k) \&. \&. \&. H(2) H(1), where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
  A(1:m-k+i-1,n-k+i), and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgeqp3 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, integer, dimension( * ) JPVT, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, real, dimension( * ) RWORK, integer INFO)"

.PP
\fBCGEQP3\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQP3 computes a QR factorization with column pivoting of a
 matrix A:  A*P = Q*R  using Level 3 BLAS\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&. M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit, the upper triangle of the array contains the
          min(M,N)-by-N upper trapezoidal matrix R; the elements below
          the diagonal, together with the array TAU, represent the
          unitary matrix Q as a product of min(M,N) elementary
          reflectors\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&. LDA >= max(1,M)\&.
.fi
.PP
.br
\fIJPVT\fP 
.PP
.nf
          JPVT is INTEGER array, dimension (N)
          On entry, if JPVT(J)\&.ne\&.0, the J-th column of A is permuted
          to the front of A*P (a leading column); if JPVT(J)=0,
          the J-th column of A is a free column\&.
          On exit, if JPVT(J)=K, then the J-th column of A*P was the
          the K-th column of A\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO=0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&. LWORK >= N+1\&.
          For optimal performance LWORK >= ( N+1 )*NB, where NB
          is the optimal blocksize\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (2*N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit\&.
          < 0: if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a real/complex vector
  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
  A(i+1:m,i), and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP
\fBContributors:\fP
.RS 4
G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA 
.RE
.PP

.SS "subroutine cgeqr2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGEQR2\fP computes the QR factorization of a general rectangular matrix using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQR2 computes a QR factorization of a complex m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix;
    0 is a (m-n)-by-n zero matrix, if m > n\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix A\&.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgeqr2p (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGEQR2P\fP computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQR2P computes a QR factorization of a complex m-by-n matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a m-by-m orthogonal matrix;
    R is an upper-triangular n-by-n matrix with nonnegative diagonal
    entries;
    0 is a (m-n)-by-n zero matrix, if m > n\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix A\&.
          On exit, the elements on and above the diagonal of the array
          contain the min(m,n) by n upper trapezoidal matrix R (R is
          upper triangular if m >= n)\&. The diagonal entries of R are
          real and nonnegative; the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i)\&.

 See Lapack Working Note 203 for details
.fi
.PP
 
.RE
.PP

.SS "subroutine cgeqrf (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGEQRF\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQRF computes a QR factorization of a complex M-by-N matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a M-by-M orthogonal matrix;
    R is an upper-triangular N-by-N matrix;
    0 is a (M-N)-by-N zero matrix, if M > N\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit, the elements on and above the diagonal of the array
          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
          upper triangular if m >= n); the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of min(m,n) elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.
          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise\&.
          For optimum performance LWORK >= N*NB, where NB is
          the optimal blocksize\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgeqrfp (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGEQRFP\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQR2P computes a QR factorization of a complex M-by-N matrix A:

    A = Q * ( R ),
            ( 0 )

 where:

    Q is a M-by-M orthogonal matrix;
    R is an upper-triangular N-by-N matrix with nonnegative diagonal
    entries;
    0 is a (M-N)-by-N zero matrix, if M > N\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit, the elements on and above the diagonal of the array
          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
          upper triangular if m >= n)\&. The diagonal entries of R
          are real and nonnegative; the elements below the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of min(m,n) elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,N)\&.
          For optimum performance LWORK >= N*NB, where NB is
          the optimal blocksize\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) \&. \&. \&. H(k), where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
  and tau in TAU(i)\&.

 See Lapack Working Note 203 for details
.fi
.PP
 
.RE
.PP

.SS "subroutine cgeqrt (integer M, integer N, integer NB, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldt, * ) T, integer LDT, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGEQRT\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQRT computes a blocked QR factorization of a complex M-by-N matrix A
 using the compact WY representation of Q\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fINB\fP 
.PP
.nf
          NB is INTEGER
          The block size to be used in the blocked QR\&.  MIN(M,N) >= NB >= 1\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit, the elements on and above the diagonal of the array
          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
          upper triangular if M >= N); the elements below the diagonal
          are the columns of V\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIT\fP 
.PP
.nf
          T is COMPLEX array, dimension (LDT,MIN(M,N))
          The upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks\&.  See below
          for further details\&.
.fi
.PP
.br
\fILDT\fP 
.PP
.nf
          LDT is INTEGER
          The leading dimension of the array T\&.  LDT >= NB\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (NB*N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix V stores the elementary reflectors H(i) in the i-th column
  below the diagonal\&. For example, if M=5 and N=3, the matrix V is

               V = (  1       )
                   ( v1  1    )
                   ( v1 v2  1 )
                   ( v1 v2 v3 )
                   ( v1 v2 v3 )

  where the vi's represent the vectors which define H(i), which are returned
  in the matrix A\&.  The 1's along the diagonal of V are not stored in A\&.

  Let K=MIN(M,N)\&.  The number of blocks is B = ceiling(K/NB), where each
  block is of order NB except for the last block, which is of order
  IB = K - (B-1)*NB\&.  For each of the B blocks, a upper triangular block
  reflector factor is computed: T1, T2, \&.\&.\&., TB\&.  The NB-by-NB (and IB-by-IB
  for the last block) T's are stored in the NB-by-K matrix T as

               T = (T1 T2 \&.\&.\&. TB)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgeqrt2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldt, * ) T, integer LDT, integer INFO)"

.PP
\fBCGEQRT2\fP computes a QR factorization of a general real or complex matrix using the compact WY representation of Q\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQRT2 computes a QR factorization of a complex M-by-N matrix A,
 using the compact WY representation of Q\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= N\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the complex M-by-N matrix A\&.  On exit, the elements on and
          above the diagonal contain the N-by-N upper triangular matrix R; the
          elements below the diagonal are the columns of V\&.  See below for
          further details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIT\fP 
.PP
.nf
          T is COMPLEX array, dimension (LDT,N)
          The N-by-N upper triangular factor of the block reflector\&.
          The elements on and above the diagonal contain the block
          reflector T; the elements below the diagonal are not used\&.
          See below for further details\&.
.fi
.PP
.br
\fILDT\fP 
.PP
.nf
          LDT is INTEGER
          The leading dimension of the array T\&.  LDT >= max(1,N)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix V stores the elementary reflectors H(i) in the i-th column
  below the diagonal\&. For example, if M=5 and N=3, the matrix V is

               V = (  1       )
                   ( v1  1    )
                   ( v1 v2  1 )
                   ( v1 v2 v3 )
                   ( v1 v2 v3 )

  where the vi's represent the vectors which define H(i), which are returned
  in the matrix A\&.  The 1's along the diagonal of V are not stored in A\&.  The
  block reflector H is then given by

               H = I - V * T * V**H

  where V**H is the conjugate transpose of V\&.
.fi
.PP
 
.RE
.PP

.SS "recursive subroutine cgeqrt3 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldt, * ) T, integer LDT, integer INFO)"

.PP
\fB CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q\&. \fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEQRT3 recursively computes a QR factorization of a complex M-by-N matrix A,
 using the compact WY representation of Q\&.

 Based on the algorithm of Elmroth and Gustavson,
 IBM J\&. Res\&. Develop\&. Vol 44 No\&. 4 July 2000\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= N\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the complex M-by-N matrix A\&.  On exit, the elements on and
          above the diagonal contain the N-by-N upper triangular matrix R; the
          elements below the diagonal are the columns of V\&.  See below for
          further details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIT\fP 
.PP
.nf
          T is COMPLEX array, dimension (LDT,N)
          The N-by-N upper triangular factor of the block reflector\&.
          The elements on and above the diagonal contain the block
          reflector T; the elements below the diagonal are not used\&.
          See below for further details\&.
.fi
.PP
.br
\fILDT\fP 
.PP
.nf
          LDT is INTEGER
          The leading dimension of the array T\&.  LDT >= max(1,N)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix V stores the elementary reflectors H(i) in the i-th column
  below the diagonal\&. For example, if M=5 and N=3, the matrix V is

               V = (  1       )
                   ( v1  1    )
                   ( v1 v2  1 )
                   ( v1 v2 v3 )
                   ( v1 v2 v3 )

  where the vi's represent the vectors which define H(i), which are returned
  in the matrix A\&.  The 1's along the diagonal of V are not stored in A\&.  The
  block reflector H is then given by

               H = I - V * T * V**H

  where V**H is the conjugate transpose of V\&.

  For details of the algorithm, see Elmroth and Gustavson (cited above)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgerfs (character TRANS, integer N, integer NRHS, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldx, * ) X, integer LDX, real, dimension( * ) FERR, real, dimension( * ) BERR, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer INFO)"

.PP
\fBCGERFS\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGERFS improves the computed solution to a system of linear
 equations and provides error bounds and backward error estimates for
 the solution\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fINRHS\fP 
.PP
.nf
          NRHS is INTEGER
          The number of right hand sides, i\&.e\&., the number of columns
          of the matrices B and X\&.  NRHS >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          The original N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
          The factors L and U from the factorization A = P*L*U
          as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
          The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
          The pivot indices from CGETRF; for 1<=i<=N, row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB,NRHS)
          The right hand side matrix B\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
          The leading dimension of the array B\&.  LDB >= max(1,N)\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by CGETRS\&.
          On exit, the improved solution matrix X\&.
.fi
.PP
.br
\fILDX\fP 
.PP
.nf
          LDX is INTEGER
          The leading dimension of the array X\&.  LDX >= max(1,N)\&.
.fi
.PP
.br
\fIFERR\fP 
.PP
.nf
          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X)\&.
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j)\&.  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error\&.
.fi
.PP
.br
\fIBERR\fP 
.PP
.nf
          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i\&.e\&., the smallest relative change in
          any element of A or B that makes X(j) an exact solution)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBInternal Parameters:\fP
.RS 4

.PP
.nf
  ITMAX is the maximum number of steps of iterative refinement\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgerfsx (character TRANS, character EQUED, integer N, integer NRHS, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, real, dimension( * ) R, real, dimension( * ) C, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldx , * ) X, integer LDX, real RCOND, real, dimension( * ) BERR, integer N_ERR_BNDS, real, dimension( nrhs, * ) ERR_BNDS_NORM, real, dimension( nrhs, * ) ERR_BNDS_COMP, integer NPARAMS, real, dimension( * ) PARAMS, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer INFO)"

.PP
\fBCGERFSX\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    CGERFSX improves the computed solution to a system of linear
    equations and provides error bounds and backward error estimates
    for the solution\&.  In addition to normwise error bound, the code
    provides maximum componentwise error bound if possible\&.  See
    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
    error bounds\&.

    The original system of linear equations may have been equilibrated
    before calling this routine, as described by arguments EQUED, R
    and C below\&. In this case, the solution and error bounds returned
    are for the original unequilibrated system\&.
.fi
.PP
 
.PP
.nf
     Some optional parameters are bundled in the PARAMS array\&.  These
     settings determine how refinement is performed, but often the
     defaults are acceptable\&.  If the defaults are acceptable, users
     can pass NPARAMS = 0 which prevents the source code from accessing
     the PARAMS argument\&.
.fi
.PP
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate transpose)
.fi
.PP
.br
\fIEQUED\fP 
.PP
.nf
          EQUED is CHARACTER*1
     Specifies the form of equilibration that was done to A
     before calling this routine\&. This is needed to compute
     the solution and error bounds correctly\&.
       = 'N':  No equilibration
       = 'R':  Row equilibration, i\&.e\&., A has been premultiplied by
               diag(R)\&.
       = 'C':  Column equilibration, i\&.e\&., A has been postmultiplied
               by diag(C)\&.
       = 'B':  Both row and column equilibration, i\&.e\&., A has been
               replaced by diag(R) * A * diag(C)\&.
               The right hand side B has been changed accordingly\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fINRHS\fP 
.PP
.nf
          NRHS is INTEGER
     The number of right hand sides, i\&.e\&., the number of columns
     of the matrices B and X\&.  NRHS >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
     The original N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization A = P*L*U
     as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from CGETRF; for 1<=i<=N, row i of the
     matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIR\fP 
.PP
.nf
          R is REAL array, dimension (N)
     The row scale factors for A\&.  If EQUED = 'R' or 'B', A is
     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
     is not accessed\&.
     If R is accessed, each element of R should be a power of the radix
     to ensure a reliable solution and error estimates\&. Scaling by
     powers of the radix does not cause rounding errors unless the
     result underflows or overflows\&. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is REAL array, dimension (N)
     The column scale factors for A\&.  If EQUED = 'C' or 'B', A is
     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
     is not accessed\&.
     If C is accessed, each element of C should be a power of the radix
     to ensure a reliable solution and error estimates\&. Scaling by
     powers of the radix does not cause rounding errors unless the
     result underflows or overflows\&. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB,NRHS)
     The right hand side matrix B\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
     The leading dimension of the array B\&.  LDB >= max(1,N)\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX array, dimension (LDX,NRHS)
     On entry, the solution matrix X, as computed by CGETRS\&.
     On exit, the improved solution matrix X\&.
.fi
.PP
.br
\fILDX\fP 
.PP
.nf
          LDX is INTEGER
     The leading dimension of the array X\&.  LDX >= max(1,N)\&.
.fi
.PP
.br
\fIRCOND\fP 
.PP
.nf
          RCOND is REAL
     Reciprocal scaled condition number\&.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done)\&.  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision\&.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned\&.
.fi
.PP
.br
\fIBERR\fP 
.PP
.nf
          BERR is REAL array, dimension (NRHS)
     Componentwise relative backward error\&.  This is the
     componentwise relative backward error of each solution vector X(j)
     (i\&.e\&., the smallest relative change in any element of A or B that
     makes X(j) an exact solution)\&.
.fi
.PP
.br
\fIN_ERR_BNDS\fP 
.PP
.nf
          N_ERR_BNDS is INTEGER
     Number of error bounds to return for each right hand side
     and each type (normwise or componentwise)\&.  See ERR_BNDS_NORM and
     ERR_BNDS_COMP below\&.
.fi
.PP
.br
\fIERR_BNDS_NORM\fP 
.PP
.nf
          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below\&. There currently are up to three pieces of information
     returned\&.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side\&.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 'Trust/don't trust' boolean\&. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon')\&.

     err = 2 'Guaranteed' error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon')\&. This error bound should only
              be trusted if the previous boolean is true\&.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number\&.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is 'guaranteed'\&. These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z\&.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1\&.

     See Lapack Working Note 165 for further details and extra
     cautions\&.
.fi
.PP
.br
\fIERR_BNDS_COMP\fP 
.PP
.nf
          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below\&. There currently are up to three
     pieces of information returned for each right-hand side\&. If
     componentwise accuracy is not requested (PARAMS(3) = 0\&.0), then
     ERR_BNDS_COMP is not accessed\&.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned\&.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side\&.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 'Trust/don't trust' boolean\&. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon')\&.

     err = 2 'Guaranteed' error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon')\&. This error bound should only
              be trusted if the previous boolean is true\&.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number\&.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is 'guaranteed'\&. These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z\&.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1\&.

     See Lapack Working Note 165 for further details and extra
     cautions\&.
.fi
.PP
.br
\fINPARAMS\fP 
.PP
.nf
          NPARAMS is INTEGER
     Specifies the number of parameters set in PARAMS\&.  If <= 0, the
     PARAMS array is never referenced and default values are used\&.
.fi
.PP
.br
\fIPARAMS\fP 
.PP
.nf
          PARAMS is REAL array, dimension NPARAMS
     Specifies algorithm parameters\&.  If an entry is < 0\&.0, then
     that entry will be filled with default value used for that
     parameter\&.  Only positions up to NPARAMS are accessed; defaults
     are used for higher-numbered parameters\&.

       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
            refinement or not\&.
         Default: 1\&.0
            = 0\&.0:  No refinement is performed, and no error bounds are
                    computed\&.
            = 1\&.0:  Use the double-precision refinement algorithm,
                    possibly with doubled-single computations if the
                    compilation environment does not support DOUBLE
                    PRECISION\&.
              (other values are reserved for future use)

       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
            computations allowed for refinement\&.
         Default: 10
         Aggressive: Set to 100 to permit convergence using approximate
                     factorizations or factorizations other than LU\&. If
                     the factorization uses a technique other than
                     Gaussian elimination, the guarantees in
                     err_bnds_norm and err_bnds_comp may no longer be
                     trustworthy\&.

       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
            will attempt to find a solution with small componentwise
            relative error in the double-precision algorithm\&.  Positive
            is true, 0\&.0 is false\&.
         Default: 1\&.0 (attempt componentwise convergence)
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (2*N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&. The solution to every right-hand side is
         guaranteed\&.
       < 0:  If INFO = -i, the i-th argument had an illegal value
       > 0 and <= N:  U(INFO,INFO) is exactly zero\&.  The factorization
         has been completed, but the factor U is exactly singular, so
         the solution and error bounds could not be computed\&. RCOND = 0
         is returned\&.
       = N+J: The solution corresponding to the Jth right-hand side is
         not guaranteed\&. The solutions corresponding to other right-
         hand sides K with K > J may not be guaranteed as well, but
         only the first such right-hand side is reported\&. If a small
         componentwise error is not requested (PARAMS(3) = 0\&.0) then
         the Jth right-hand side is the first with a normwise error
         bound that is not guaranteed (the smallest J such
         that ERR_BNDS_NORM(J,1) = 0\&.0)\&. By default (PARAMS(3) = 1\&.0)
         the Jth right-hand side is the first with either a normwise or
         componentwise error bound that is not guaranteed (the smallest
         J such that either ERR_BNDS_NORM(J,1) = 0\&.0 or
         ERR_BNDS_COMP(J,1) = 0\&.0)\&. See the definition of
         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1)\&. To get information
         about all of the right-hand sides check ERR_BNDS_NORM or
         ERR_BNDS_COMP\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgerq2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)"

.PP
\fBCGERQ2\fP computes the RQ factorization of a general rectangular matrix using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGERQ2 computes an RQ factorization of a complex m by n matrix A:
 A = R * Q\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix A\&.
          On exit, if m <= n, the upper triangle of the subarray
          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
          if m >= n, the elements on and above the (m-n)-th subdiagonal
          contain the m by n upper trapezoidal matrix R; the remaining
          elements, with the array TAU, represent the unitary matrix
          Q as a product of elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (M)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1)**H H(2)**H \&. \&. \&. H(k)**H, where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgerqf (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGERQF\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGERQF computes an RQ factorization of a complex M-by-N matrix A:
 A = R * Q\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit,
          if m <= n, the upper triangle of the subarray
          A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
          if m >= n, the elements on and above the (m-n)-th subdiagonal
          contain the M-by-N upper trapezoidal matrix R;
          the remaining elements, with the array TAU, represent the
          unitary matrix Q as a product of min(m,n) elementary
          reflectors (see Further Details)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.
          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise\&.
          For optimum performance LWORK >= M*NB, where NB is
          the optimal blocksize\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1)**H H(2)**H \&. \&. \&. H(k)**H, where k = min(m,n)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgesvj (character*1 JOBA, character*1 JOBU, character*1 JOBV, integer M, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( n ) SVA, integer MV, complex, dimension( ldv, * ) V, integer LDV, complex, dimension( lwork ) CWORK, integer LWORK, real, dimension( lrwork ) RWORK, integer LRWORK, integer INFO)"

.PP
\fB CGESVJ \fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGESVJ computes the singular value decomposition (SVD) of a complex
 M-by-N matrix A, where M >= N\&. The SVD of A is written as
                                    [++]   [xx]   [x0]   [xx]
              A = U * SIGMA * V^*,  [++] = [xx] * [ox] * [xx]
                                    [++]   [xx]
 where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal
 matrix, and V is an N-by-N unitary matrix\&. The diagonal elements
 of SIGMA are the singular values of A\&. The columns of U and V are the
 left and the right singular vectors of A, respectively\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOBA\fP 
.PP
.nf
          JOBA is CHARACTER*1
          Specifies the structure of A\&.
          = 'L': The input matrix A is lower triangular;
          = 'U': The input matrix A is upper triangular;
          = 'G': The input matrix A is general M-by-N matrix, M >= N\&.
.fi
.PP
.br
\fIJOBU\fP 
.PP
.nf
          JOBU is CHARACTER*1
          Specifies whether to compute the left singular vectors
          (columns of U):
          = 'U' or 'F': The left singular vectors corresponding to the nonzero
                 singular values are computed and returned in the leading
                 columns of A\&. See more details in the description of A\&.
                 The default numerical orthogonality threshold is set to
                 approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=SLAMCH('E')\&.
          = 'C': Analogous to JOBU='U', except that user can control the
                 level of numerical orthogonality of the computed left
                 singular vectors\&. TOL can be set to TOL = CTOL*EPS, where
                 CTOL is given on input in the array WORK\&.
                 No CTOL smaller than ONE is allowed\&. CTOL greater
                 than 1 / EPS is meaningless\&. The option 'C'
                 can be used if M*EPS is satisfactory orthogonality
                 of the computed left singular vectors, so CTOL=M could
                 save few sweeps of Jacobi rotations\&.
                 See the descriptions of A and WORK(1)\&.
          = 'N': The matrix U is not computed\&. However, see the
                 description of A\&.
.fi
.PP
.br
\fIJOBV\fP 
.PP
.nf
          JOBV is CHARACTER*1
          Specifies whether to compute the right singular vectors, that
          is, the matrix V:
          = 'V' or 'J': the matrix V is computed and returned in the array V
          = 'A':  the Jacobi rotations are applied to the MV-by-N
                  array V\&. In other words, the right singular vector
                  matrix V is not computed explicitly; instead it is
                  applied to an MV-by-N matrix initially stored in the
                  first MV rows of V\&.
          = 'N':  the matrix V is not computed and the array V is not
                  referenced
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the input matrix A\&. 1/SLAMCH('E') > M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the input matrix A\&.
          M >= N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A\&.
          On exit,
          If JOBU = 'U' \&.OR\&. JOBU = 'C':
                 If INFO = 0 :
                 RANKA orthonormal columns of U are returned in the
                 leading RANKA columns of the array A\&. Here RANKA <= N
                 is the number of computed singular values of A that are
                 above the underflow threshold SLAMCH('S')\&. The singular
                 vectors corresponding to underflowed or zero singular
                 values are not computed\&. The value of RANKA is returned
                 in the array RWORK as RANKA=NINT(RWORK(2))\&. Also see the
                 descriptions of SVA and RWORK\&. The computed columns of U
                 are mutually numerically orthogonal up to approximately
                 TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU = 'C'),
                 see the description of JOBU\&.
                 If INFO > 0,
                 the procedure CGESVJ did not converge in the given number
                 of iterations (sweeps)\&. In that case, the computed
                 columns of U may not be orthogonal up to TOL\&. The output
                 U (stored in A), SIGMA (given by the computed singular
                 values in SVA(1:N)) and V is still a decomposition of the
                 input matrix A in the sense that the residual
                 || A - SCALE * U * SIGMA * V^* ||_2 / ||A||_2 is small\&.
          If JOBU = 'N':
                 If INFO = 0 :
                 Note that the left singular vectors are 'for free' in the
                 one-sided Jacobi SVD algorithm\&. However, if only the
                 singular values are needed, the level of numerical
                 orthogonality of U is not an issue and iterations are
                 stopped when the columns of the iterated matrix are
                 numerically orthogonal up to approximately M*EPS\&. Thus,
                 on exit, A contains the columns of U scaled with the
                 corresponding singular values\&.
                 If INFO > 0 :
                 the procedure CGESVJ did not converge in the given number
                 of iterations (sweeps)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fISVA\fP 
.PP
.nf
          SVA is REAL array, dimension (N)
          On exit,
          If INFO = 0 :
          depending on the value SCALE = RWORK(1), we have:
                 If SCALE = ONE:
                 SVA(1:N) contains the computed singular values of A\&.
                 During the computation SVA contains the Euclidean column
                 norms of the iterated matrices in the array A\&.
                 If SCALE \&.NE\&. ONE:
                 The singular values of A are SCALE*SVA(1:N), and this
                 factored representation is due to the fact that some of the
                 singular values of A might underflow or overflow\&.

          If INFO > 0 :
          the procedure CGESVJ did not converge in the given number of
          iterations (sweeps) and SCALE*SVA(1:N) may not be accurate\&.
.fi
.PP
.br
\fIMV\fP 
.PP
.nf
          MV is INTEGER
          If JOBV = 'A', then the product of Jacobi rotations in CGESVJ
          is applied to the first MV rows of V\&. See the description of JOBV\&.
.fi
.PP
.br
\fIV\fP 
.PP
.nf
          V is COMPLEX array, dimension (LDV,N)
          If JOBV = 'V', then V contains on exit the N-by-N matrix of
                         the right singular vectors;
          If JOBV = 'A', then V contains the product of the computed right
                         singular vector matrix and the initial matrix in
                         the array V\&.
          If JOBV = 'N', then V is not referenced\&.
.fi
.PP
.br
\fILDV\fP 
.PP
.nf
          LDV is INTEGER
          The leading dimension of the array V, LDV >= 1\&.
          If JOBV = 'V', then LDV >= max(1,N)\&.
          If JOBV = 'A', then LDV >= max(1,MV) \&.
.fi
.PP
.br
\fICWORK\fP 
.PP
.nf
          CWORK is COMPLEX array, dimension (max(1,LWORK))
          Used as workspace\&.
          If on entry LWORK = -1, then a workspace query is assumed and
          no computation is done; CWORK(1) is set to the minial (and optimal)
          length of CWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER\&.
          Length of CWORK, LWORK >= M+N\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (max(6,LRWORK))
          On entry,
          If JOBU = 'C' :
          RWORK(1) = CTOL, where CTOL defines the threshold for convergence\&.
                    The process stops if all columns of A are mutually
                    orthogonal up to CTOL*EPS, EPS=SLAMCH('E')\&.
                    It is required that CTOL >= ONE, i\&.e\&. it is not
                    allowed to force the routine to obtain orthogonality
                    below EPSILON\&.
          On exit,
          RWORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N)
                    are the computed singular values of A\&.
                    (See description of SVA()\&.)
          RWORK(2) = NINT(RWORK(2)) is the number of the computed nonzero
                    singular values\&.
          RWORK(3) = NINT(RWORK(3)) is the number of the computed singular
                    values that are larger than the underflow threshold\&.
          RWORK(4) = NINT(RWORK(4)) is the number of sweeps of Jacobi
                    rotations needed for numerical convergence\&.
          RWORK(5) = max_{i\&.NE\&.j} |COS(A(:,i),A(:,j))| in the last sweep\&.
                    This is useful information in cases when CGESVJ did
                    not converge, as it can be used to estimate whether
                    the output is still useful and for post festum analysis\&.
          RWORK(6) = the largest absolute value over all sines of the
                    Jacobi rotation angles in the last sweep\&. It can be
                    useful for a post festum analysis\&.
         If on entry LRWORK = -1, then a workspace query is assumed and
         no computation is done; RWORK(1) is set to the minial (and optimal)
         length of RWORK\&.
.fi
.PP
.br
\fILRWORK\fP 
.PP
.nf
         LRWORK is INTEGER
         Length of RWORK, LRWORK >= MAX(6,N)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, then the i-th argument had an illegal value
          > 0:  CGESVJ did not converge in the maximal allowed number
                (NSWEEP=30) of sweeps\&. The output may still be useful\&.
                See the description of RWORK\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
 The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane
 rotations\&. In the case of underflow of the tangent of the Jacobi angle, a
 modified Jacobi transformation of Drmac [3] is used\&. Pivot strategy uses
 column interchanges of de Rijk [1]\&. The relative accuracy of the computed
 singular values and the accuracy of the computed singular vectors (in
 angle metric) is as guaranteed by the theory of Demmel and Veselic [2]\&.
 The condition number that determines the accuracy in the full rank case
 is essentially min_{D=diag} kappa(A*D), where kappa(\&.) is the
 spectral condition number\&. The best performance of this Jacobi SVD
 procedure is achieved if used in an  accelerated version of Drmac and
 Veselic [4,5], and it is the kernel routine in the SIGMA library [6]\&.
 Some tuning parameters (marked with [TP]) are available for the
 implementer\&.
 The computational range for the nonzero singular values is the  machine
 number interval ( UNDERFLOW , OVERFLOW )\&. In extreme cases, even
 denormalized singular values can be computed with the corresponding
 gradual loss of accurate digits\&.
.fi
.PP
 
.RE
.PP
\fBContributor:\fP
.RS 4

.PP
.nf
  ============

  Zlatko Drmac (Zagreb, Croatia)
.fi
.PP
 
.RE
.PP
\fBReferences:\fP
.RS 4

.PP
.nf
 [1] P\&. P\&. M\&. De Rijk: A one-sided Jacobi algorithm for computing the
    singular value decomposition on a vector computer\&.
    SIAM J\&. Sci\&. Stat\&. Comp\&., Vol\&. 10 (1998), pp\&. 359-371\&.
 [2] J\&. Demmel and K\&. Veselic: Jacobi method is more accurate than QR\&.
 [3] Z\&. Drmac: Implementation of Jacobi rotations for accurate singular
    value computation in floating point arithmetic\&.
    SIAM J\&. Sci\&. Comp\&., Vol\&. 18 (1997), pp\&. 1200-1222\&.
 [4] Z\&. Drmac and K\&. Veselic: New fast and accurate Jacobi SVD algorithm I\&.
    SIAM J\&. Matrix Anal\&. Appl\&. Vol\&. 35, No\&. 2 (2008), pp\&. 1322-1342\&.
    LAPACK Working note 169\&.
 [5] Z\&. Drmac and K\&. Veselic: New fast and accurate Jacobi SVD algorithm II\&.
    SIAM J\&. Matrix Anal\&. Appl\&. Vol\&. 35, No\&. 2 (2008), pp\&. 1343-1362\&.
    LAPACK Working note 170\&.
 [6] Z\&. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
    QSVD, (H,K)-SVD computations\&.
    Department of Mathematics, University of Zagreb, 2008, 2015\&.
.fi
.PP
 
.RE
.PP
\fBBugs, examples and comments:\fP
.RS 4

.PP
.nf
  ===========================
  Please report all bugs and send interesting test examples and comments to
  drmac@math\&.hr\&. Thank you\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cgetf2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, integer INFO)"

.PP
\fBCGETF2\fP computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm)\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGETF2 computes an LU factorization of a general m-by-n matrix A
 using partial pivoting with row interchanges\&.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n)\&.

 This is the right-looking Level 2 BLAS version of the algorithm\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the m by n matrix to be factored\&.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, U(k,k) is exactly zero\&. The factorization
               has been completed, but the factor U is exactly
               singular, and division by zero will occur if it is used
               to solve a system of equations\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgetrf (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, integer INFO)"

.PP
\fBCGETRF\fP \fBCGETRF\fP VARIANT: iterative version of Sivan Toledo's recursive LU algorithm
.PP
\fBCGETRF\fP VARIANT: left-looking Level 3 BLAS version of the algorithm\&.
.PP
 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges\&.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n)\&.

 This is the right-looking Level 3 BLAS version of the algorithm\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored\&.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero\&. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&.
.RE
.PP
\fBPurpose:\fP 
.PP
.nf
 CGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges\&.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n)\&.

 This is the left-looking Level 3 BLAS version of the algorithm\&.
.fi
.PP
 
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored\&.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero\&. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBDate\fP
.RS 4
December 2016
.RE
.PP
\fBPurpose:\fP 
.PP
.nf
 CGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges\&.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n)\&.

 This code implements an iterative version of Sivan Toledo's recursive
 LU algorithm[1]\&.  For square matrices, this iterative versions should
 be within a factor of two of the optimum number of memory transfers\&.

 The pattern is as follows, with the large blocks of U being updated
 in one call to DTRSM, and the dotted lines denoting sections that
 have had all pending permutations applied:

  1 2 3 4 5 6 7 8
 +-+-+---+-------+------
 | |1|   |       |
 |\&.+-+ 2 |       |
 | | |   |       |
 |\&.|\&.+-+-+   4   |
 | | | |1|       |
 | | |\&.+-+       |
 | | | | |       |
 |\&.|\&.|\&.|\&.+-+-+---+  8
 | | | | | |1|   |
 | | | | |\&.+-+ 2 |
 | | | | | | |   |
 | | | | |\&.|\&.+-+-+
 | | | | | | | |1|
 | | | | | | |\&.+-+
 | | | | | | | | |
 |\&.|\&.|\&.|\&.|\&.|\&.|\&.|\&.+-----
 | | | | | | | | |

 The 1-2-1-4-1-2-1-8-\&.\&.\&. pattern is the position of the last 1 bit in
 the binary expansion of the current column\&.  Each Schur update is
 applied as soon as the necessary portion of U is available\&.

 [1] Toledo, S\&. 1997\&. Locality of Reference in LU Decomposition with
 Partial Pivoting\&. SIAM J\&. Matrix Anal\&. Appl\&. 18, 4 (Oct\&. 1997),
 1065-1081\&. http://dx\&.doi\&.org/10\&.1137/S0895479896297744
.fi
.PP
 
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored\&.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero\&. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBDate\fP
.RS 4
December 2016 
.RE
.PP

.SS "recursive subroutine cgetrf2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, integer INFO)"

.PP
\fBCGETRF2\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGETRF2 computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges\&.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n)\&.

 This is the recursive version of the algorithm\&. It divides
 the matrix into four submatrices:

        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
    A = [ -----|----- ]  with n1 = min(m,n)/2
        [  A21 | A22  ]       n2 = n-n1

                                       [ A11 ]
 The subroutine calls itself to factor [ --- ],
                                       [ A12 ]
                 [ A12 ]
 do the swaps on [ --- ], solve A12, update A22,
                 [ A22 ]

 then calls itself to factor A22 and do the swaps on A21\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored\&.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero\&. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgetri (integer N, complex, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, complex, dimension( * ) WORK, integer LWORK, integer INFO)"

.PP
\fBCGETRI\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGETRI computes the inverse of a matrix using the LU factorization
 computed by CGETRF\&.

 This method inverts U and then computes inv(A) by solving the system
 inv(A)*L = inv(U) for inv(A)\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the factors L and U from the factorization
          A = P*L*U as computed by CGETRF\&.
          On exit, if INFO = 0, the inverse of the original matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
          The pivot indices from CGETRF; for 1<=i<=N, row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO=0, then WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,N)\&.
          For optimal performance LWORK >= N*NB, where NB is
          the optimal blocksize returned by ILAENV\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is
                singular and its inverse could not be computed\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cgetrs (character TRANS, integer N, integer NRHS, complex, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, complex, dimension( ldb, * ) B, integer LDB, integer INFO)"

.PP
\fBCGETRS\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGETRS solves a system of linear equations
    A * X = B,  A**T * X = B,  or  A**H * X = B
 with a general N-by-N matrix A using the LU factorization computed
 by CGETRF\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fINRHS\fP 
.PP
.nf
          NRHS is INTEGER
          The number of right hand sides, i\&.e\&., the number of columns
          of the matrix B\&.  NRHS >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          The factors L and U from the factorization A = P*L*U
          as computed by CGETRF\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
          The pivot indices from CGETRF; for 1<=i<=N, row i of the
          matrix was interchanged with row IPIV(i)\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B\&.
          On exit, the solution matrix X\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
          The leading dimension of the array B\&.  LDB >= max(1,N)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine chgeqz (character JOB, character COMPQ, character COMPZ, integer N, integer ILO, integer IHI, complex, dimension( ldh, * ) H, integer LDH, complex, dimension( ldt, * ) T, integer LDT, complex, dimension( * ) ALPHA, complex, dimension( * ) BETA, complex, dimension( ldq, * ) Q, integer LDQ, complex, dimension( ldz, * ) Z, integer LDZ, complex, dimension( * ) WORK, integer LWORK, real, dimension( * ) RWORK, integer INFO)"

.PP
\fBCHGEQZ\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
 where H is an upper Hessenberg matrix and T is upper triangular,
 using the single-shift QZ method\&.
 Matrix pairs of this type are produced by the reduction to
 generalized upper Hessenberg form of a complex matrix pair (A,B):

    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,

 as computed by CGGHRD\&.

 If JOB='S', then the Hessenberg-triangular pair (H,T) is
 also reduced to generalized Schur form,

    H = Q*S*Z**H,  T = Q*P*Z**H,

 where Q and Z are unitary matrices and S and P are upper triangular\&.

 Optionally, the unitary matrix Q from the generalized Schur
 factorization may be postmultiplied into an input matrix Q1, and the
 unitary matrix Z may be postmultiplied into an input matrix Z1\&.
 If Q1 and Z1 are the unitary matrices from CGGHRD that reduced
 the matrix pair (A,B) to generalized Hessenberg form, then the output
 matrices Q1*Q and Z1*Z are the unitary factors from the generalized
 Schur factorization of (A,B):

    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H\&.

 To avoid overflow, eigenvalues of the matrix pair (H,T)
 (equivalently, of (A,B)) are computed as a pair of complex values
 (alpha,beta)\&.  If beta is nonzero, lambda = alpha / beta is an
 eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
    A*x = lambda*B*x
 and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
 alternate form of the GNEP
    mu*A*y = B*y\&.
 The values of alpha and beta for the i-th eigenvalue can be read
 directly from the generalized Schur form:  alpha = S(i,i),
 beta = P(i,i)\&.

 Ref: C\&.B\&. Moler & G\&.W\&. Stewart, 'An Algorithm for Generalized Matrix
      Eigenvalue Problems', SIAM J\&. Numer\&. Anal\&., 10(1973),
      pp\&. 241--256\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOB\fP 
.PP
.nf
          JOB is CHARACTER*1
          = 'E': Compute eigenvalues only;
          = 'S': Computer eigenvalues and the Schur form\&.
.fi
.PP
.br
\fICOMPQ\fP 
.PP
.nf
          COMPQ is CHARACTER*1
          = 'N': Left Schur vectors (Q) are not computed;
          = 'I': Q is initialized to the unit matrix and the matrix Q
                 of left Schur vectors of (H,T) is returned;
          = 'V': Q must contain a unitary matrix Q1 on entry and
                 the product Q1*Q is returned\&.
.fi
.PP
.br
\fICOMPZ\fP 
.PP
.nf
          COMPZ is CHARACTER*1
          = 'N': Right Schur vectors (Z) are not computed;
          = 'I': Q is initialized to the unit matrix and the matrix Z
                 of right Schur vectors of (H,T) is returned;
          = 'V': Z must contain a unitary matrix Z1 on entry and
                 the product Z1*Z is returned\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrices H, T, Q, and Z\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER
          ILO and IHI mark the rows and columns of H which are in
          Hessenberg form\&.  It is assumed that A is already upper
          triangular in rows and columns 1:ILO-1 and IHI+1:N\&.
          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0\&.
.fi
.PP
.br
\fIH\fP 
.PP
.nf
          H is COMPLEX array, dimension (LDH, N)
          On entry, the N-by-N upper Hessenberg matrix H\&.
          On exit, if JOB = 'S', H contains the upper triangular
          matrix S from the generalized Schur factorization\&.
          If JOB = 'E', the diagonal of H matches that of S, but
          the rest of H is unspecified\&.
.fi
.PP
.br
\fILDH\fP 
.PP
.nf
          LDH is INTEGER
          The leading dimension of the array H\&.  LDH >= max( 1, N )\&.
.fi
.PP
.br
\fIT\fP 
.PP
.nf
          T is COMPLEX array, dimension (LDT, N)
          On entry, the N-by-N upper triangular matrix T\&.
          On exit, if JOB = 'S', T contains the upper triangular
          matrix P from the generalized Schur factorization\&.
          If JOB = 'E', the diagonal of T matches that of P, but
          the rest of T is unspecified\&.
.fi
.PP
.br
\fILDT\fP 
.PP
.nf
          LDT is INTEGER
          The leading dimension of the array T\&.  LDT >= max( 1, N )\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX array, dimension (N)
          The complex scalars alpha that define the eigenvalues of
          GNEP\&.  ALPHA(i) = S(i,i) in the generalized Schur
          factorization\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX array, dimension (N)
          The real non-negative scalars beta that define the
          eigenvalues of GNEP\&.  BETA(i) = P(i,i) in the generalized
          Schur factorization\&.

          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
          represent the j-th eigenvalue of the matrix pair (A,B), in
          one of the forms lambda = alpha/beta or mu = beta/alpha\&.
          Since either lambda or mu may overflow, they should not,
          in general, be computed\&.
.fi
.PP
.br
\fIQ\fP 
.PP
.nf
          Q is COMPLEX array, dimension (LDQ, N)
          On entry, if COMPQ = 'V', the unitary matrix Q1 used in the
          reduction of (A,B) to generalized Hessenberg form\&.
          On exit, if COMPQ = 'I', the unitary matrix of left Schur
          vectors of (H,T), and if COMPQ = 'V', the unitary matrix of
          left Schur vectors of (A,B)\&.
          Not referenced if COMPQ = 'N'\&.
.fi
.PP
.br
\fILDQ\fP 
.PP
.nf
          LDQ is INTEGER
          The leading dimension of the array Q\&.  LDQ >= 1\&.
          If COMPQ='V' or 'I', then LDQ >= N\&.
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX array, dimension (LDZ, N)
          On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
          reduction of (A,B) to generalized Hessenberg form\&.
          On exit, if COMPZ = 'I', the unitary matrix of right Schur
          vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
          right Schur vectors of (A,B)\&.
          Not referenced if COMPZ = 'N'\&.
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
          The leading dimension of the array Z\&.  LDZ >= 1\&.
          If COMPZ='V' or 'I', then LDZ >= N\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,N)\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          = 1,\&.\&.\&.,N: the QZ iteration did not converge\&.  (H,T) is not
                     in Schur form, but ALPHA(i) and BETA(i),
                     i=INFO+1,\&.\&.\&.,N should be correct\&.
          = N+1,\&.\&.\&.,2*N: the shift calculation failed\&.  (H,T) is not
                     in Schur form, but ALPHA(i) and BETA(i),
                     i=INFO-N+1,\&.\&.\&.,N should be correct\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  We assume that complex ABS works as long as its value is less than
  overflow\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine cla_geamv (integer TRANS, integer M, integer N, real ALPHA, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) X, integer INCX, real BETA, real, dimension( * ) Y, integer INCY)"

.PP
\fBCLA_GEAMV\fP computes a matrix-vector product using a general matrix to calculate error bounds\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLA_GEAMV  performs one of the matrix-vector operations

         y := alpha*abs(A)*abs(x) + beta*abs(y),
    or   y := alpha*abs(A)**T*abs(x) + beta*abs(y),

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n matrix\&.

 This function is primarily used in calculating error bounds\&.
 To protect against underflow during evaluation, components in
 the resulting vector are perturbed away from zero by (N+1)
 times the underflow threshold\&.  To prevent unnecessarily large
 errors for block-structure embedded in general matrices,
 'symbolically' zero components are not perturbed\&.  A zero
 entry is considered 'symbolic' if all multiplications involved
 in computing that entry have at least one zero multiplicand\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is INTEGER
           On entry, TRANS specifies the operation to be performed as
           follows:

             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
             BLAS_TRANS         y := alpha*abs(A**T)*abs(x) + beta*abs(y)
             BLAS_CONJ_TRANS    y := alpha*abs(A**T)*abs(x) + beta*abs(y)

           Unchanged on exit\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A\&.
           M must be at least zero\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A\&.
           N must be at least zero\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is REAL
           On entry, ALPHA specifies the scalar alpha\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,n)
           Before entry, the leading m by n part of the array A must
           contain the matrix of coefficients\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, m )\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX array, dimension
           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise\&.
           Before entry, the incremented array X must contain the
           vector x\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is REAL
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is REAL array, dimension
           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise\&.
           Before entry with BETA non-zero, the incremented array Y
           must contain the vector y\&. On exit, Y is overwritten by the
           updated vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
           Unchanged on exit\&.

  Level 2 Blas routine\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "real function cla_gercond_c (character TRANS, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, real, dimension( * ) C, logical CAPPLY, integer INFO, complex, dimension( * ) WORK, real, dimension( * ) RWORK)"

.PP
\fBCLA_GERCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    CLA_GERCOND_C computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a REAL vector\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by CGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is REAL array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C))\&.
.fi
.PP
.br
\fICAPPLY\fP 
.PP
.nf
          CAPPLY is LOGICAL
     If \&.TRUE\&. then access the vector C in the formula above\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)\&.
     Workspace\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "real function cla_gercond_x (character TRANS, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, complex, dimension( * ) X, integer INFO, complex, dimension( * ) WORK, real, dimension( * ) RWORK)"

.PP
\fBCLA_GERCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for general matrices\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    CLA_GERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by CGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)\&.
     Workspace\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine cla_gerfsx_extended (integer PREC_TYPE, integer TRANS_TYPE, integer N, integer NRHS, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, logical COLEQU, real, dimension( * ) C, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldy, * ) Y, integer LDY, real, dimension( * ) BERR_OUT, integer N_NORMS, real, dimension( nrhs, * ) ERRS_N, real, dimension( nrhs, * ) ERRS_C, complex, dimension( * ) RES, real, dimension( * ) AYB, complex, dimension( * ) DY, complex, dimension( * ) Y_TAIL, real RCOND, integer ITHRESH, real RTHRESH, real DZ_UB, logical IGNORE_CWISE, integer INFO)"

.PP
\fBCLA_GERFSX_EXTENDED\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLA_GERFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution\&.
 This subroutine is called by CGERFSX to perform iterative refinement\&.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible\&. See comments for ERRS_N
 and ERRS_C for details of the error bounds\&. Note that this
 subroutine is only responsible for setting the second fields of
 ERRS_N and ERRS_C\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIPREC_TYPE\fP 
.PP
.nf
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement\&.
     The value is defined by ILAPREC(P) where P is a CHARACTER and P
          = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X' or 'E':  Extra
.fi
.PP
.br
\fITRANS_TYPE\fP 
.PP
.nf
          TRANS_TYPE is INTEGER
     Specifies the transposition operation on A\&.
     The value is defined by ILATRANS(T) where T is a CHARACTER and T
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fINRHS\fP 
.PP
.nf
          NRHS is INTEGER
     The number of right-hand-sides, i\&.e\&., the number of columns of the
     matrix B\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by CGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fICOLEQU\fP 
.PP
.nf
          COLEQU is LOGICAL
     If \&.TRUE\&. then column equilibration was done to A before calling
     this routine\&. This is needed to compute the solution and error
     bounds correctly\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is REAL array, dimension (N)
     The column scale factors for A\&. If COLEQU = \&.FALSE\&., C
     is not accessed\&. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates\&.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows\&. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB,NRHS)
     The right-hand-side matrix B\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
     The leading dimension of the array B\&.  LDB >= max(1,N)\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX array, dimension (LDY,NRHS)
     On entry, the solution matrix X, as computed by CGETRS\&.
     On exit, the improved solution matrix Y\&.
.fi
.PP
.br
\fILDY\fP 
.PP
.nf
          LDY is INTEGER
     The leading dimension of the array Y\&.  LDY >= max(1,N)\&.
.fi
.PP
.br
\fIBERR_OUT\fP 
.PP
.nf
          BERR_OUT is REAL array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z\&. This is computed by CLA_LIN_BERR\&.
.fi
.PP
.br
\fIN_NORMS\fP 
.PP
.nf
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERRS_N
     and ERRS_C)\&.
     If N_NORMS >= 1 return normwise error bounds\&.
     If N_NORMS >= 2 return componentwise error bounds\&.
.fi
.PP
.br
\fIERRS_N\fP 
.PP
.nf
          ERRS_N is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below\&. There currently are up to three pieces of information
     returned\&.

     The first index in ERRS_N(i,:) corresponds to the ith
     right-hand side\&.

     The second index in ERRS_N(:,err) contains the following
     three fields:
     err = 1 'Trust/don't trust' boolean\&. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon')\&.

     err = 2 'Guaranteed' error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon')\&. This error bound should only
              be trusted if the previous boolean is true\&.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number\&.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is 'guaranteed'\&. These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z\&.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1\&.

     This subroutine is only responsible for setting the second field
     above\&.
     See Lapack Working Note 165 for further details and extra
     cautions\&.
.fi
.PP
.br
\fIERRS_C\fP 
.PP
.nf
          ERRS_C is REAL array, dimension (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below\&. There currently are up to three
     pieces of information returned for each right-hand side\&. If
     componentwise accuracy is not requested (PARAMS(3) = 0\&.0), then
     ERRS_C is not accessed\&.  If N_ERR_BNDS < 3, then at most
     the first (:,N_ERR_BNDS) entries are returned\&.

     The first index in ERRS_C(i,:) corresponds to the ith
     right-hand side\&.

     The second index in ERRS_C(:,err) contains the following
     three fields:
     err = 1 'Trust/don't trust' boolean\&. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon')\&.

     err = 2 'Guaranteed' error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon')\&. This error bound should only
              be trusted if the previous boolean is true\&.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number\&.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is 'guaranteed'\&. These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z\&.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1\&.

     This subroutine is only responsible for setting the second field
     above\&.
     See Lapack Working Note 165 for further details and extra
     cautions\&.
.fi
.PP
.br
\fIRES\fP 
.PP
.nf
          RES is COMPLEX array, dimension (N)
     Workspace to hold the intermediate residual\&.
.fi
.PP
.br
\fIAYB\fP 
.PP
.nf
          AYB is REAL array, dimension (N)
     Workspace\&.
.fi
.PP
.br
\fIDY\fP 
.PP
.nf
          DY is COMPLEX array, dimension (N)
     Workspace to hold the intermediate solution\&.
.fi
.PP
.br
\fIY_TAIL\fP 
.PP
.nf
          Y_TAIL is COMPLEX array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution\&.
.fi
.PP
.br
\fIRCOND\fP 
.PP
.nf
          RCOND is REAL
     Reciprocal scaled condition number\&.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done)\&.  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision\&.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned\&.
.fi
.PP
.br
\fIITHRESH\fP 
.PP
.nf
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement\&. The default is 10\&. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU\&. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERRS_N and ERRS_C may no longer be trustworthy\&.
.fi
.PP
.br
\fIRTHRESH\fP 
.PP
.nf
          RTHRESH is REAL
     Determines when to stop refinement if the error estimate stops
     decreasing\&. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z\&. RTHRESH satisfies 0 < RTHRESH <= 1\&. The
     default value is 0\&.5\&. For 'aggressive' set to 0\&.9 to permit
     convergence on extremely ill-conditioned matrices\&. See LAWN 165
     for more details\&.
.fi
.PP
.br
\fIDZ_UB\fP 
.PP
.nf
          DZ_UB is REAL
     Determines when to start considering componentwise convergence\&.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we define as the relative
     change in each component being less than DZ_UB\&. The default value
     is 0\&.25, requiring the first bit to be stable\&. See LAWN 165 for
     more details\&.
.fi
.PP
.br
\fIIGNORE_CWISE\fP 
.PP
.nf
          IGNORE_CWISE is LOGICAL
     If \&.TRUE\&. then ignore componentwise convergence\&. Default value
     is \&.FALSE\&.\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
       < 0:  if INFO = -i, the ith argument to CGETRS had an illegal
             value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "real function cla_gerpvgrw (integer N, integer NCOLS, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF)"

.PP
\fBCLA_GERPVGRW\fP multiplies a square real matrix by a complex matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLA_GERPVGRW computes the reciprocal pivot growth factor
 norm(A)/norm(U)\&. The 'max absolute element' norm is used\&. If this is
 much less than 1, the stability of the LU factorization of the
 (equilibrated) matrix A could be poor\&. This also means that the
 solution X, estimated condition numbers, and error bounds could be
 unreliable\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fINCOLS\fP 
.PP
.nf
          NCOLS is INTEGER
     The number of columns of the matrix A\&. NCOLS >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "recursive subroutine claqz0 (character, intent(in) WANTS, character, intent(in) WANTQ, character, intent(in) WANTZ, integer, intent(in) N, integer, intent(in) ILO, integer, intent(in) IHI, complex, dimension( lda, * ), intent(inout) A, integer, intent(in) LDA, complex, dimension( ldb, * ), intent(inout) B, integer, intent(in) LDB, complex, dimension( * ), intent(inout) ALPHA, complex, dimension( * ), intent(inout) BETA, complex, dimension( ldq, * ), intent(inout) Q, integer, intent(in) LDQ, complex, dimension( ldz, * ), intent(inout) Z, integer, intent(in) LDZ, complex, dimension( * ), intent(inout) WORK, integer, intent(in) LWORK, real, dimension( * ), intent(out) RWORK, integer, intent(in) REC, integer, intent(out) INFO)"

.PP
\fBCLAQZ0\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLAQZ0 computes the eigenvalues of a matrix pair (H,T),
 where H is an upper Hessenberg matrix and T is upper triangular,
 using the double-shift QZ method\&.
 Matrix pairs of this type are produced by the reduction to
 generalized upper Hessenberg form of a matrix pair (A,B):

    A = Q1*H*Z1**H,  B = Q1*T*Z1**H,

 as computed by CGGHRD\&.

 If JOB='S', then the Hessenberg-triangular pair (H,T) is
 also reduced to generalized Schur form,

    H = Q*S*Z**H,  T = Q*P*Z**H,

 where Q and Z are unitary matrices, P and S are an upper triangular
 matrices\&.

 Optionally, the unitary matrix Q from the generalized Schur
 factorization may be postmultiplied into an input matrix Q1, and the
 unitary matrix Z may be postmultiplied into an input matrix Z1\&.
 If Q1 and Z1 are the unitary matrices from CGGHRD that reduced
 the matrix pair (A,B) to generalized upper Hessenberg form, then the
 output matrices Q1*Q and Z1*Z are the unitary factors from the
 generalized Schur factorization of (A,B):

    A = (Q1*Q)*S*(Z1*Z)**H,  B = (Q1*Q)*P*(Z1*Z)**H\&.

 To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
 of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
 complex and beta real\&.
 If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
 generalized nonsymmetric eigenvalue problem (GNEP)
    A*x = lambda*B*x
 and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
 alternate form of the GNEP
    mu*A*y = B*y\&.
 Eigenvalues can be read directly from the generalized Schur
 form:
   alpha = S(i,i), beta = P(i,i)\&.

 Ref: C\&.B\&. Moler & G\&.W\&. Stewart, 'An Algorithm for Generalized Matrix
      Eigenvalue Problems', SIAM J\&. Numer\&. Anal\&., 10(1973),
      pp\&. 241--256\&.

 Ref: B\&. Kagstrom, D\&. Kressner, 'Multishift Variants of the QZ
      Algorithm with Aggressive Early Deflation', SIAM J\&. Numer\&.
      Anal\&., 29(2006), pp\&. 199--227\&.

 Ref: T\&. Steel, D\&. Camps, K\&. Meerbergen, R\&. Vandebril 'A multishift,
      multipole rational QZ method with agressive early deflation'
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIWANTS\fP 
.PP
.nf
          WANTS is CHARACTER*1
          = 'E': Compute eigenvalues only;
          = 'S': Compute eigenvalues and the Schur form\&.
.fi
.PP
.br
\fIWANTQ\fP 
.PP
.nf
          WANTQ is CHARACTER*1
          = 'N': Left Schur vectors (Q) are not computed;
          = 'I': Q is initialized to the unit matrix and the matrix Q
                 of left Schur vectors of (A,B) is returned;
          = 'V': Q must contain an unitary matrix Q1 on entry and
                 the product Q1*Q is returned\&.
.fi
.PP
.br
\fIWANTZ\fP 
.PP
.nf
          WANTZ is CHARACTER*1
          = 'N': Right Schur vectors (Z) are not computed;
          = 'I': Z is initialized to the unit matrix and the matrix Z
                 of right Schur vectors of (A,B) is returned;
          = 'V': Z must contain an unitary matrix Z1 on entry and
                 the product Z1*Z is returned\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrices A, B, Q, and Z\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER
          ILO and IHI mark the rows and columns of A which are in
          Hessenberg form\&.  It is assumed that A is already upper
          triangular in rows and columns 1:ILO-1 and IHI+1:N\&.
          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA, N)
          On entry, the N-by-N upper Hessenberg matrix A\&.
          On exit, if JOB = 'S', A contains the upper triangular
          matrix S from the generalized Schur factorization\&.
          If JOB = 'E', the diagonal of A matches that of S, but
          the rest of A is unspecified\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max( 1, N )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB, N)
          On entry, the N-by-N upper triangular matrix B\&.
          On exit, if JOB = 'S', B contains the upper triangular
          matrix P from the generalized Schur factorization\&.
          If JOB = 'E', the diagonal of B matches that of P, but
          the rest of B is unspecified\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
          The leading dimension of the array B\&.  LDB >= max( 1, N )\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX array, dimension (N)
          Each scalar alpha defining an eigenvalue
          of GNEP\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX array, dimension (N)
          The scalars beta that define the eigenvalues of GNEP\&.
          Together, the quantities alpha = ALPHA(j) and
          beta = BETA(j) represent the j-th eigenvalue of the matrix
          pair (A,B), in one of the forms lambda = alpha/beta or
          mu = beta/alpha\&.  Since either lambda or mu may overflow,
          they should not, in general, be computed\&.
.fi
.PP
.br
\fIQ\fP 
.PP
.nf
          Q is COMPLEX array, dimension (LDQ, N)
          On entry, if COMPQ = 'V', the unitary matrix Q1 used in
          the reduction of (A,B) to generalized Hessenberg form\&.
          On exit, if COMPQ = 'I', the unitary matrix of left Schur
          vectors of (A,B), and if COMPQ = 'V', the unitary matrix
          of left Schur vectors of (A,B)\&.
          Not referenced if COMPQ = 'N'\&.
.fi
.PP
.br
\fILDQ\fP 
.PP
.nf
          LDQ is INTEGER
          The leading dimension of the array Q\&.  LDQ >= 1\&.
          If COMPQ='V' or 'I', then LDQ >= N\&.
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX array, dimension (LDZ, N)
          On entry, if COMPZ = 'V', the unitary matrix Z1 used in
          the reduction of (A,B) to generalized Hessenberg form\&.
          On exit, if COMPZ = 'I', the unitary matrix of
          right Schur vectors of (H,T), and if COMPZ = 'V', the
          unitary matrix of right Schur vectors of (A,B)\&.
          Not referenced if COMPZ = 'N'\&.
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
          The leading dimension of the array Z\&.  LDZ >= 1\&.
          If COMPZ='V' or 'I', then LDZ >= N\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,N)\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)
.fi
.PP
.br
\fIREC\fP 
.PP
.nf
          REC is INTEGER
             REC indicates the current recursion level\&. Should be set
             to 0 on first call\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          = 1,\&.\&.\&.,N: the QZ iteration did not converge\&.  (A,B) is not
                     in Schur form, but ALPHA(i) and
                     BETA(i), i=INFO+1,\&.\&.\&.,N should be correct\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Thijs Steel, KU Leuven 
.RE
.PP
\fBDate\fP
.RS 4
May 2020 
.RE
.PP

.SS "subroutine claqz1 (logical, intent(in) ILQ, logical, intent(in) ILZ, integer, intent(in) K, integer, intent(in) ISTARTM, integer, intent(in) ISTOPM, integer, intent(in) IHI, complex, dimension( lda, * ) A, integer, intent(in) LDA, complex, dimension( ldb, * ) B, integer, intent(in) LDB, integer, intent(in) NQ, integer, intent(in) QSTART, complex, dimension( ldq, * ) Q, integer, intent(in) LDQ, integer, intent(in) NZ, integer, intent(in) ZSTART, complex, dimension( ldz, * ) Z, integer, intent(in) LDZ)"

.PP
\fBCLAQZ1\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
      CLAQZ1 chases a 1x1 shift bulge in a matrix pencil down a single position
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIILQ\fP 
.PP
.nf
          ILQ is LOGICAL
              Determines whether or not to update the matrix Q
.fi
.PP
.br
\fIILZ\fP 
.PP
.nf
          ILZ is LOGICAL
              Determines whether or not to update the matrix Z
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
              Index indicating the position of the bulge\&.
              On entry, the bulge is located in
              (A(k+1,k),B(k+1,k))\&.
              On exit, the bulge is located in
              (A(k+2,k+1),B(k+2,k+1))\&.
.fi
.PP
.br
\fIISTARTM\fP 
.PP
.nf
          ISTARTM is INTEGER
.fi
.PP
.br
\fIISTOPM\fP 
.PP
.nf
          ISTOPM is INTEGER
              Updates to (A,B) are restricted to
              (istartm:k+2,k:istopm)\&. It is assumed
              without checking that istartm <= k+1 and
              k+2 <= istopm
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
              The leading dimension of A as declared in
              the calling procedure\&.
.fi
.PP
 
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB,N)
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
              The leading dimension of B as declared in
              the calling procedure\&.
.fi
.PP
.br
\fINQ\fP 
.PP
.nf
          NQ is INTEGER
              The order of the matrix Q
.fi
.PP
.br
\fIQSTART\fP 
.PP
.nf
          QSTART is INTEGER
              Start index of the matrix Q\&. Rotations are applied
              To columns k+2-qStart:k+3-qStart of Q\&.
.fi
.PP
 
.br
\fIQ\fP 
.PP
.nf
          Q is COMPLEX array, dimension (LDQ,NQ)
.fi
.PP
.br
\fILDQ\fP 
.PP
.nf
          LDQ is INTEGER
              The leading dimension of Q as declared in
              the calling procedure\&.
.fi
.PP
.br
\fINZ\fP 
.PP
.nf
          NZ is INTEGER
              The order of the matrix Z
.fi
.PP
.br
\fIZSTART\fP 
.PP
.nf
          ZSTART is INTEGER
              Start index of the matrix Z\&. Rotations are applied
              To columns k+1-qStart:k+2-qStart of Z\&.
.fi
.PP
 
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX array, dimension (LDZ,NZ)
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
              The leading dimension of Q as declared in
              the calling procedure\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Thijs Steel, KU Leuven 
.RE
.PP
\fBDate\fP
.RS 4
May 2020 
.RE
.PP

.SS "recursive subroutine claqz2 (logical, intent(in) ILSCHUR, logical, intent(in) ILQ, logical, intent(in) ILZ, integer, intent(in) N, integer, intent(in) ILO, integer, intent(in) IHI, integer, intent(in) NW, complex, dimension( lda, * ), intent(inout) A, integer, intent(in) LDA, complex, dimension( ldb, * ), intent(inout) B, integer, intent(in) LDB, complex, dimension( ldq, * ), intent(inout) Q, integer, intent(in) LDQ, complex, dimension( ldz, * ), intent(inout) Z, integer, intent(in) LDZ, integer, intent(out) NS, integer, intent(out) ND, complex, dimension( * ), intent(inout) ALPHA, complex, dimension( * ), intent(inout) BETA, complex, dimension( ldqc, * ) QC, integer, intent(in) LDQC, complex, dimension( ldzc, * ) ZC, integer, intent(in) LDZC, complex, dimension( * ) WORK, integer, intent(in) LWORK, real, dimension( * ) RWORK, integer, intent(in) REC, integer, intent(out) INFO)"

.PP
\fBCLAQZ2\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLAQZ2 performs AED
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIILSCHUR\fP 
.PP
.nf
          ILSCHUR is LOGICAL
              Determines whether or not to update the full Schur form
.fi
.PP
.br
\fIILQ\fP 
.PP
.nf
          ILQ is LOGICAL
              Determines whether or not to update the matrix Q
.fi
.PP
.br
\fIILZ\fP 
.PP
.nf
          ILZ is LOGICAL
              Determines whether or not to update the matrix Z
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrices A, B, Q, and Z\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER
          ILO and IHI mark the rows and columns of (A,B) which
          are to be normalized
.fi
.PP
.br
\fINW\fP 
.PP
.nf
          NW is INTEGER
          The desired size of the deflation window\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA, N)
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max( 1, N )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB, N)
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
          The leading dimension of the array B\&.  LDB >= max( 1, N )\&.
.fi
.PP
.br
\fIQ\fP 
.PP
.nf
          Q is COMPLEX array, dimension (LDQ, N)
.fi
.PP
.br
\fILDQ\fP 
.PP
.nf
          LDQ is INTEGER
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX array, dimension (LDZ, N)
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
.fi
.PP
.br
\fINS\fP 
.PP
.nf
          NS is INTEGER
          The number of unconverged eigenvalues available to
          use as shifts\&.
.fi
.PP
.br
\fIND\fP 
.PP
.nf
          ND is INTEGER
          The number of converged eigenvalues found\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX array, dimension (N)
          Each scalar alpha defining an eigenvalue
          of GNEP\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX array, dimension (N)
          The scalars beta that define the eigenvalues of GNEP\&.
          Together, the quantities alpha = ALPHA(j) and
          beta = BETA(j) represent the j-th eigenvalue of the matrix
          pair (A,B), in one of the forms lambda = alpha/beta or
          mu = beta/alpha\&.  Since either lambda or mu may overflow,
          they should not, in general, be computed\&.
.fi
.PP
.br
\fIQC\fP 
.PP
.nf
          QC is COMPLEX array, dimension (LDQC, NW)
.fi
.PP
.br
\fILDQC\fP 
.PP
.nf
          LDQC is INTEGER
.fi
.PP
.br
\fIZC\fP 
.PP
.nf
          ZC is COMPLEX array, dimension (LDZC, NW)
.fi
.PP
.br
\fILDZC\fP 
.PP
.nf
          LDZ is INTEGER
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,N)\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)
.fi
.PP
.br
\fIREC\fP 
.PP
.nf
          REC is INTEGER
             REC indicates the current recursion level\&. Should be set
             to 0 on first call\&.

 \\param[out] INFO
 \\verbatim
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Thijs Steel, KU Leuven, KU Leuven 
.RE
.PP
\fBDate\fP
.RS 4
May 2020 
.RE
.PP

.SS "subroutine claqz3 (logical, intent(in) ILSCHUR, logical, intent(in) ILQ, logical, intent(in) ILZ, integer, intent(in) N, integer, intent(in) ILO, integer, intent(in) IHI, integer, intent(in) NSHIFTS, integer, intent(in) NBLOCK_DESIRED, complex, dimension( * ), intent(inout) ALPHA, complex, dimension( * ), intent(inout) BETA, complex, dimension( lda, * ), intent(inout) A, integer, intent(in) LDA, complex, dimension( ldb, * ), intent(inout) B, integer, intent(in) LDB, complex, dimension( ldq, * ), intent(inout) Q, integer, intent(in) LDQ, complex, dimension( ldz, * ), intent(inout) Z, integer, intent(in) LDZ, complex, dimension( ldqc, * ), intent(inout) QC, integer, intent(in) LDQC, complex, dimension( ldzc, * ), intent(inout) ZC, integer, intent(in) LDZC, complex, dimension( * ), intent(inout) WORK, integer, intent(in) LWORK, integer, intent(out) INFO)"

.PP
\fBCLAQZ3\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLAQZ3 Executes a single multishift QZ sweep
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIILSCHUR\fP 
.PP
.nf
          ILSCHUR is LOGICAL
              Determines whether or not to update the full Schur form
.fi
.PP
 
.br
\fIILQ\fP 
.PP
.nf
          ILQ is LOGICAL
              Determines whether or not to update the matrix Q
.fi
.PP
.br
\fIILZ\fP 
.PP
.nf
          ILZ is LOGICAL
              Determines whether or not to update the matrix Z
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrices A, B, Q, and Z\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER
.fi
.PP
.br
\fINSHIFTS\fP 
.PP
.nf
          NSHIFTS is INTEGER
          The desired number of shifts to use
.fi
.PP
.br
\fINBLOCK_DESIRED\fP 
.PP
.nf
          NBLOCK_DESIRED is INTEGER
          The desired size of the computational windows
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX array\&. SR contains
          the alpha parts of the shifts to use\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX array\&. SS contains
          the scale of the shifts to use\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA, N)
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max( 1, N )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB, N)
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
          The leading dimension of the array B\&.  LDB >= max( 1, N )\&.
.fi
.PP
.br
\fIQ\fP 
.PP
.nf
          Q is COMPLEX array, dimension (LDQ, N)
.fi
.PP
.br
\fILDQ\fP 
.PP
.nf
          LDQ is INTEGER
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX array, dimension (LDZ, N)
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
.fi
.PP
.br
\fIQC\fP 
.PP
.nf
          QC is COMPLEX array, dimension (LDQC, NBLOCK_DESIRED)
.fi
.PP
.br
\fILDQC\fP 
.PP
.nf
          LDQC is INTEGER
.fi
.PP
.br
\fIZC\fP 
.PP
.nf
          ZC is COMPLEX array, dimension (LDZC, NBLOCK_DESIRED)
.fi
.PP
.br
\fILDZC\fP 
.PP
.nf
          LDZ is INTEGER
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK\&.
.fi
.PP
.br
\fILWORK\fP 
.PP
.nf
          LWORK is INTEGER
          The dimension of the array WORK\&.  LWORK >= max(1,N)\&.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Thijs Steel, KU Leuven 
.RE
.PP
\fBDate\fP
.RS 4
May 2020 
.RE
.PP

.SS "subroutine claunhr_col_getrfnp (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) D, integer INFO)"

.PP
\fBCLAUNHR_COL_GETRFNP\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLAUNHR_COL_GETRFNP computes the modified LU factorization without
 pivoting of a complex general M-by-N matrix A\&. The factorization has
 the form:

     A - S = L * U,

 where:
    S is a m-by-n diagonal sign matrix with the diagonal D, so that
    D(i) = S(i,i), 1 <= i <= min(M,N)\&. The diagonal D is constructed
    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
    i-1 steps of Gaussian elimination\&. This means that the diagonal
    element at each step of 'modified' Gaussian elimination is
    at least one in absolute value (so that division-by-zero not
    not possible during the division by the diagonal element);

    L is a M-by-N lower triangular matrix with unit diagonal elements
    (lower trapezoidal if M > N);

    and U is a M-by-N upper triangular matrix
    (upper trapezoidal if M < N)\&.

 This routine is an auxiliary routine used in the Householder
 reconstruction routine CUNHR_COL\&. In CUNHR_COL, this routine is
 applied to an M-by-N matrix A with orthonormal columns, where each
 element is bounded by one in absolute value\&. With the choice of
 the matrix S above, one can show that the diagonal element at each
 step of Gaussian elimination is the largest (in absolute value) in
 the column on or below the diagonal, so that no pivoting is required
 for numerical stability [1]\&.

 For more details on the Householder reconstruction algorithm,
 including the modified LU factorization, see [1]\&.

 This is the blocked right-looking version of the algorithm,
 calling Level 3 BLAS to update the submatrix\&. To factorize a block,
 this routine calls the recursive routine CLAUNHR_COL_GETRFNP2\&.

 [1] 'Reconstructing Householder vectors from tall-skinny QR',
     G\&. Ballard, J\&. Demmel, L\&. Grigori, M\&. Jacquelin, H\&.D\&. Nguyen,
     E\&. Solomonik, J\&. Parallel Distrib\&. Comput\&.,
     vol\&. 85, pp\&. 3-31, 2015\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored\&.
          On exit, the factors L and U from the factorization
          A-S=L*U; the unit diagonal elements of L are not stored\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fID\fP 
.PP
.nf
          D is COMPLEX array, dimension min(M,N)
          The diagonal elements of the diagonal M-by-N sign matrix S,
          D(i) = S(i,i), where 1 <= i <= min(M,N)\&. The elements can be
          only ( +1\&.0, 0\&.0 ) or (-1\&.0, 0\&.0 )\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBContributors:\fP
.RS 4

.PP
.nf
 November 2019, Igor Kozachenko,
                Computer Science Division,
                University of California, Berkeley
.fi
.PP
 
.RE
.PP

.SS "recursive subroutine claunhr_col_getrfnp2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) D, integer INFO)"

.PP
\fBCLAUNHR_COL_GETRFNP2\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLAUNHR_COL_GETRFNP2 computes the modified LU factorization without
 pivoting of a complex general M-by-N matrix A\&. The factorization has
 the form:

     A - S = L * U,

 where:
    S is a m-by-n diagonal sign matrix with the diagonal D, so that
    D(i) = S(i,i), 1 <= i <= min(M,N)\&. The diagonal D is constructed
    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
    i-1 steps of Gaussian elimination\&. This means that the diagonal
    element at each step of 'modified' Gaussian elimination is at
    least one in absolute value (so that division-by-zero not
    possible during the division by the diagonal element);

    L is a M-by-N lower triangular matrix with unit diagonal elements
    (lower trapezoidal if M > N);

    and U is a M-by-N upper triangular matrix
    (upper trapezoidal if M < N)\&.

 This routine is an auxiliary routine used in the Householder
 reconstruction routine CUNHR_COL\&. In CUNHR_COL, this routine is
 applied to an M-by-N matrix A with orthonormal columns, where each
 element is bounded by one in absolute value\&. With the choice of
 the matrix S above, one can show that the diagonal element at each
 step of Gaussian elimination is the largest (in absolute value) in
 the column on or below the diagonal, so that no pivoting is required
 for numerical stability [1]\&.

 For more details on the Householder reconstruction algorithm,
 including the modified LU factorization, see [1]\&.

 This is the recursive version of the LU factorization algorithm\&.
 Denote A - S by B\&. The algorithm divides the matrix B into four
 submatrices:

        [  B11 | B12  ]  where B11 is n1 by n1,
    B = [ -----|----- ]        B21 is (m-n1) by n1,
        [  B21 | B22  ]        B12 is n1 by n2,
                               B22 is (m-n1) by n2,
                               with n1 = min(m,n)/2, n2 = n-n1\&.


 The subroutine calls itself to factor B11, solves for B21,
 solves for B12, updates B22, then calls itself to factor B22\&.

 For more details on the recursive LU algorithm, see [2]\&.

 CLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked
 routine CLAUNHR_COL_GETRFNP, which uses blocked code calling
 Level 3 BLAS to update the submatrix\&. However, CLAUNHR_COL_GETRFNP2
 is self-sufficient and can be used without CLAUNHR_COL_GETRFNP\&.

 [1] 'Reconstructing Householder vectors from tall-skinny QR',
     G\&. Ballard, J\&. Demmel, L\&. Grigori, M\&. Jacquelin, H\&.D\&. Nguyen,
     E\&. Solomonik, J\&. Parallel Distrib\&. Comput\&.,
     vol\&. 85, pp\&. 3-31, 2015\&.

 [2] 'Recursion leads to automatic variable blocking for dense linear
     algebra algorithms', F\&. Gustavson, IBM J\&. of Res\&. and Dev\&.,
     vol\&. 41, no\&. 6, pp\&. 737-755, 1997\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of rows of the matrix A\&.  M >= 0\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The number of columns of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored\&.
          On exit, the factors L and U from the factorization
          A-S=L*U; the unit diagonal elements of L are not stored\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,M)\&.
.fi
.PP
.br
\fID\fP 
.PP
.nf
          D is COMPLEX array, dimension min(M,N)
          The diagonal elements of the diagonal M-by-N sign matrix S,
          D(i) = S(i,i), where 1 <= i <= min(M,N)\&. The elements can be
          only ( +1\&.0, 0\&.0 ) or (-1\&.0, 0\&.0 )\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBContributors:\fP
.RS 4

.PP
.nf
 November 2019, Igor Kozachenko,
                Computer Science Division,
                University of California, Berkeley
.fi
.PP
 
.RE
.PP

.SS "subroutine ctgevc (character SIDE, character HOWMNY, logical, dimension( * ) SELECT, integer N, complex, dimension( lds, * ) S, integer LDS, complex, dimension( ldp, * ) P, integer LDP, complex, dimension( ldvl, * ) VL, integer LDVL, complex, dimension( ldvr, * ) VR, integer LDVR, integer MM, integer M, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer INFO)"

.PP
\fBCTGEVC\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CTGEVC computes some or all of the right and/or left eigenvectors of
 a pair of complex matrices (S,P), where S and P are upper triangular\&.
 Matrix pairs of this type are produced by the generalized Schur
 factorization of a complex matrix pair (A,B):

    A = Q*S*Z**H,  B = Q*P*Z**H

 as computed by CGGHRD + CHGEQZ\&.

 The right eigenvector x and the left eigenvector y of (S,P)
 corresponding to an eigenvalue w are defined by:

    S*x = w*P*x,  (y**H)*S = w*(y**H)*P,

 where y**H denotes the conjugate tranpose of y\&.
 The eigenvalues are not input to this routine, but are computed
 directly from the diagonal elements of S and P\&.

 This routine returns the matrices X and/or Y of right and left
 eigenvectors of (S,P), or the products Z*X and/or Q*Y,
 where Z and Q are input matrices\&.
 If Q and Z are the unitary factors from the generalized Schur
 factorization of a matrix pair (A,B), then Z*X and Q*Y
 are the matrices of right and left eigenvectors of (A,B)\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fISIDE\fP 
.PP
.nf
          SIDE is CHARACTER*1
          = 'R': compute right eigenvectors only;
          = 'L': compute left eigenvectors only;
          = 'B': compute both right and left eigenvectors\&.
.fi
.PP
.br
\fIHOWMNY\fP 
.PP
.nf
          HOWMNY is CHARACTER*1
          = 'A': compute all right and/or left eigenvectors;
          = 'B': compute all right and/or left eigenvectors,
                 backtransformed by the matrices in VR and/or VL;
          = 'S': compute selected right and/or left eigenvectors,
                 specified by the logical array SELECT\&.
.fi
.PP
.br
\fISELECT\fP 
.PP
.nf
          SELECT is LOGICAL array, dimension (N)
          If HOWMNY='S', SELECT specifies the eigenvectors to be
          computed\&.  The eigenvector corresponding to the j-th
          eigenvalue is computed if SELECT(j) = \&.TRUE\&.\&.
          Not referenced if HOWMNY = 'A' or 'B'\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrices S and P\&.  N >= 0\&.
.fi
.PP
.br
\fIS\fP 
.PP
.nf
          S is COMPLEX array, dimension (LDS,N)
          The upper triangular matrix S from a generalized Schur
          factorization, as computed by CHGEQZ\&.
.fi
.PP
.br
\fILDS\fP 
.PP
.nf
          LDS is INTEGER
          The leading dimension of array S\&.  LDS >= max(1,N)\&.
.fi
.PP
.br
\fIP\fP 
.PP
.nf
          P is COMPLEX array, dimension (LDP,N)
          The upper triangular matrix P from a generalized Schur
          factorization, as computed by CHGEQZ\&.  P must have real
          diagonal elements\&.
.fi
.PP
.br
\fILDP\fP 
.PP
.nf
          LDP is INTEGER
          The leading dimension of array P\&.  LDP >= max(1,N)\&.
.fi
.PP
.br
\fIVL\fP 
.PP
.nf
          VL is COMPLEX array, dimension (LDVL,MM)
          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
          contain an N-by-N matrix Q (usually the unitary matrix Q
          of left Schur vectors returned by CHGEQZ)\&.
          On exit, if SIDE = 'L' or 'B', VL contains:
          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
          if HOWMNY = 'B', the matrix Q*Y;
          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
                      SELECT, stored consecutively in the columns of
                      VL, in the same order as their eigenvalues\&.
          Not referenced if SIDE = 'R'\&.
.fi
.PP
.br
\fILDVL\fP 
.PP
.nf
          LDVL is INTEGER
          The leading dimension of array VL\&.  LDVL >= 1, and if
          SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N\&.
.fi
.PP
.br
\fIVR\fP 
.PP
.nf
          VR is COMPLEX array, dimension (LDVR,MM)
          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
          contain an N-by-N matrix Q (usually the unitary matrix Z
          of right Schur vectors returned by CHGEQZ)\&.
          On exit, if SIDE = 'R' or 'B', VR contains:
          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
          if HOWMNY = 'B', the matrix Z*X;
          if HOWMNY = 'S', the right eigenvectors of (S,P) specified by
                      SELECT, stored consecutively in the columns of
                      VR, in the same order as their eigenvalues\&.
          Not referenced if SIDE = 'L'\&.
.fi
.PP
.br
\fILDVR\fP 
.PP
.nf
          LDVR is INTEGER
          The leading dimension of the array VR\&.  LDVR >= 1, and if
          SIDE = 'R' or 'B', LDVR >= N\&.
.fi
.PP
.br
\fIMM\fP 
.PP
.nf
          MM is INTEGER
          The number of columns in the arrays VL and/or VR\&. MM >= M\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
          The number of columns in the arrays VL and/or VR actually
          used to store the eigenvectors\&.  If HOWMNY = 'A' or 'B', M
          is set to N\&.  Each selected eigenvector occupies one column\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (2*N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine ctgexc (logical WANTQ, logical WANTZ, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldq, * ) Q, integer LDQ, complex, dimension( ldz, * ) Z, integer LDZ, integer IFST, integer ILST, integer INFO)"

.PP
\fBCTGEXC\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CTGEXC reorders the generalized Schur decomposition of a complex
 matrix pair (A,B), using an unitary equivalence transformation
 (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with
 row index IFST is moved to row ILST\&.

 (A, B) must be in generalized Schur canonical form, that is, A and
 B are both upper triangular\&.

 Optionally, the matrices Q and Z of generalized Schur vectors are
 updated\&.

        Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
        Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIWANTQ\fP 
.PP
.nf
          WANTQ is LOGICAL
          \&.TRUE\&. : update the left transformation matrix Q;
          \&.FALSE\&.: do not update Q\&.
.fi
.PP
.br
\fIWANTZ\fP 
.PP
.nf
          WANTZ is LOGICAL
          \&.TRUE\&. : update the right transformation matrix Z;
          \&.FALSE\&.: do not update Z\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrices A and B\&. N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the upper triangular matrix A in the pair (A, B)\&.
          On exit, the updated matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&. LDA >= max(1,N)\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is COMPLEX array, dimension (LDB,N)
          On entry, the upper triangular matrix B in the pair (A, B)\&.
          On exit, the updated matrix B\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
          The leading dimension of the array B\&. LDB >= max(1,N)\&.
.fi
.PP
.br
\fIQ\fP 
.PP
.nf
          Q is COMPLEX array, dimension (LDQ,N)
          On entry, if WANTQ = \&.TRUE\&., the unitary matrix Q\&.
          On exit, the updated matrix Q\&.
          If WANTQ = \&.FALSE\&., Q is not referenced\&.
.fi
.PP
.br
\fILDQ\fP 
.PP
.nf
          LDQ is INTEGER
          The leading dimension of the array Q\&. LDQ >= 1;
          If WANTQ = \&.TRUE\&., LDQ >= N\&.
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX array, dimension (LDZ,N)
          On entry, if WANTZ = \&.TRUE\&., the unitary matrix Z\&.
          On exit, the updated matrix Z\&.
          If WANTZ = \&.FALSE\&., Z is not referenced\&.
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
          The leading dimension of the array Z\&. LDZ >= 1;
          If WANTZ = \&.TRUE\&., LDZ >= N\&.
.fi
.PP
.br
\fIIFST\fP 
.PP
.nf
          IFST is INTEGER
.fi
.PP
.br
\fIILST\fP 
.PP
.nf
          ILST is INTEGER
          Specify the reordering of the diagonal blocks of (A, B)\&.
          The block with row index IFST is moved to row ILST, by a
          sequence of swapping between adjacent blocks\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
           =0:  Successful exit\&.
           <0:  if INFO = -i, the i-th argument had an illegal value\&.
           =1:  The transformed matrix pair (A, B) would be too far
                from generalized Schur form; the problem is ill-
                conditioned\&. (A, B) may have been partially reordered,
                and ILST points to the first row of the current
                position of the block being moved\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBContributors:\fP
.RS 4
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden\&. 
.RE
.PP
\fBReferences:\fP
.RS 4
[1] B\&. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M\&.S\&. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ\&. 1993, pp 195-218\&. 
.br
 [2] B\&. Kagstrom and P\&. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94\&.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994\&. Also as LAPACK Working Note 87\&. To appear in Numerical Algorithms, 1996\&. 
.br
 [3] B\&. Kagstrom and P\&. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93\&.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75\&. To appear in ACM Trans\&. on Math\&. Software, Vol 22, No 1, 1996\&. 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.