.TH "complexHEauxiliary" 3 "Sun Nov 27 2022" "Version 3.11.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
complexHEauxiliary \- complex
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "subroutine \fBcheswapr\fP (UPLO, N, A, LDA, I1, I2)"
.br
.RI "\fBCHESWAPR\fP applies an elementary permutation on the rows and columns of a Hermitian matrix\&. "
.ti -1c
.RI "real function \fBclanhe\fP (NORM, UPLO, N, A, LDA, WORK)"
.br
.RI "\fBCLANHE\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix\&. "
.ti -1c
.RI "subroutine \fBclaqhe\fP (UPLO, N, A, LDA, S, SCOND, AMAX, EQUED)"
.br
.RI "\fBCLAQHE\fP scales a Hermitian matrix\&. "
.in -1c
.SH "Detailed Description"
.PP 
This is the group of complex auxiliary functions for HE matrices 
.SH "Function Documentation"
.PP 
.SS "subroutine cheswapr (character UPLO, integer N, complex, dimension( lda, n ) A, integer LDA, integer I1, integer I2)"

.PP
\fBCHESWAPR\fP applies an elementary permutation on the rows and columns of a Hermitian matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CHESWAPR applies an elementary permutation on the rows and the columns of
 a hermitian matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are stored
          as an upper or lower triangular matrix\&.
          = 'U':  Upper triangular, form is A = U*D*U**T;
          = 'L':  Lower triangular, form is A = L*D*L**T\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the NB diagonal matrix D and the multipliers
          used to obtain the factor U or L as computed by CSYTRF\&.

          On exit, if INFO = 0, the (symmetric) inverse of the original
          matrix\&.  If UPLO = 'U', the upper triangular part of the
          inverse is formed and the part of A below the diagonal is not
          referenced; if UPLO = 'L' the lower triangular part of the
          inverse is formed and the part of A above the diagonal is
          not referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fII1\fP 
.PP
.nf
          I1 is INTEGER
          Index of the first row to swap
.fi
.PP
.br
\fII2\fP 
.PP
.nf
          I2 is INTEGER
          Index of the second row to swap
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "real function clanhe (character NORM, character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) WORK)"

.PP
\fBCLANHE\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLANHE  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 complex hermitian matrix A\&.
.fi
.PP
.RE
.PP
\fBReturns\fP
.RS 4
CLANHE 
.PP
.nf
    CLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares)\&.  Note that  max(abs(A(i,j)))  is not a consistent matrix norm\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fINORM\fP 
.PP
.nf
          NORM is CHARACTER*1
          Specifies the value to be returned in CLANHE as described
          above\&.
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          hermitian matrix A is to be referenced\&.
          = 'U':  Upper triangular part of A is referenced
          = 'L':  Lower triangular part of A is referenced
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.  When N = 0, CLANHE is
          set to zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          The hermitian matrix A\&.  If UPLO = 'U', the leading n by n
          upper triangular part of A contains the upper triangular part
          of the matrix A, and the strictly lower triangular part of A
          is not referenced\&.  If UPLO = 'L', the leading n by n lower
          triangular part of A contains the lower triangular part of
          the matrix A, and the strictly upper triangular part of A is
          not referenced\&. Note that the imaginary parts of the diagonal
          elements need not be set and are assumed to be zero\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(N,1)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine claqhe (character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) S, real SCOND, real AMAX, character EQUED)"

.PP
\fBCLAQHE\fP scales a Hermitian matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLAQHE equilibrates a Hermitian matrix A using the scaling factors
 in the vector S\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored\&.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the Hermitian matrix A\&.  If UPLO = 'U', the leading
          n by n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced\&.  If UPLO = 'L', the
          leading n by n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced\&.

          On exit, if EQUED = 'Y', the equilibrated matrix:
          diag(S) * A * diag(S)\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(N,1)\&.
.fi
.PP
.br
\fIS\fP 
.PP
.nf
          S is REAL array, dimension (N)
          The scale factors for A\&.
.fi
.PP
.br
\fISCOND\fP 
.PP
.nf
          SCOND is REAL
          Ratio of the smallest S(i) to the largest S(i)\&.
.fi
.PP
.br
\fIAMAX\fP 
.PP
.nf
          AMAX is REAL
          Absolute value of largest matrix entry\&.
.fi
.PP
.br
\fIEQUED\fP 
.PP
.nf
          EQUED is CHARACTER*1
          Specifies whether or not equilibration was done\&.
          = 'N':  No equilibration\&.
          = 'Y':  Equilibration was done, i\&.e\&., A has been replaced by
                  diag(S) * A * diag(S)\&.
.fi
.PP
 
.RE
.PP
\fBInternal Parameters:\fP
.RS 4

.PP
.nf
  THRESH is a threshold value used to decide if scaling should be done
  based on the ratio of the scaling factors\&.  If SCOND < THRESH,
  scaling is done\&.

  LARGE and SMALL are threshold values used to decide if scaling should
  be done based on the absolute size of the largest matrix element\&.
  If AMAX > LARGE or AMAX < SMALL, scaling is done\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.