.TH "gehd2" 3 "Tue Jan 28 2025 00:54:31" "Version 3.12.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
gehd2 \- gehd2: reduction to Hessenberg, level 2
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "subroutine \fBcgehd2\fP (n, ilo, ihi, a, lda, tau, work, info)"
.br
.RI "\fBCGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBdgehd2\fP (n, ilo, ihi, a, lda, tau, work, info)"
.br
.RI "\fBDGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBsgehd2\fP (n, ilo, ihi, a, lda, tau, work, info)"
.br
.RI "\fBSGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. "
.ti -1c
.RI "subroutine \fBzgehd2\fP (n, ilo, ihi, a, lda, tau, work, info)"
.br
.RI "\fBZGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&. "
.in -1c
.SH "Detailed Description"
.PP 

.SH "Function Documentation"
.PP 
.SS "subroutine cgehd2 (integer n, integer ilo, integer ihi, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)"

.PP
\fBCGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CGEHD2 reduces a complex general matrix A to upper Hessenberg form H
 by a unitary similarity transformation:  Q**H * A * Q = H \&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER

          It is assumed that A is already upper triangular in rows
          and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are normally
          set by a previous call to CGEBAL; otherwise they should be
          set to 1 and N respectively\&. See Further Details\&.
          1 <= ILO <= IHI <= max(1,N)\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          On entry, the n by n general matrix to be reduced\&.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          elements below the first subdiagonal, with the array TAU,
          represent the unitary matrix Q as a product of elementary
          reflectors\&. See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of (ihi-ilo) elementary
  reflectors

     Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
  exit in A(i+2:ihi,i), and tau in TAU(i)\&.

  The contents of A are illustrated by the following example, with
  n = 7, ilo = 2 and ihi = 6:

  on entry,                        on exit,

  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
  (                         a )    (                          a )

  where a denotes an element of the original matrix A, h denotes a
  modified element of the upper Hessenberg matrix H, and vi denotes an
  element of the vector defining H(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine dgehd2 (integer n, integer ilo, integer ihi, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)"

.PP
\fBDGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
 an orthogonal similarity transformation:  Q**T * A * Q = H \&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER

          It is assumed that A is already upper triangular in rows
          and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are normally
          set by a previous call to DGEBAL; otherwise they should be
          set to 1 and N respectively\&. See Further Details\&.
          1 <= ILO <= IHI <= max(1,N)\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the n by n general matrix to be reduced\&.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          elements below the first subdiagonal, with the array TAU,
          represent the orthogonal matrix Q as a product of elementary
          reflectors\&. See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is DOUBLE PRECISION array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is DOUBLE PRECISION array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of (ihi-ilo) elementary
  reflectors

     Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
  exit in A(i+2:ihi,i), and tau in TAU(i)\&.

  The contents of A are illustrated by the following example, with
  n = 7, ilo = 2 and ihi = 6:

  on entry,                        on exit,

  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
  (                         a )    (                          a )

  where a denotes an element of the original matrix A, h denotes a
  modified element of the upper Hessenberg matrix H, and vi denotes an
  element of the vector defining H(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine sgehd2 (integer n, integer ilo, integer ihi, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)"

.PP
\fBSGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 SGEHD2 reduces a real general matrix A to upper Hessenberg form H by
 an orthogonal similarity transformation:  Q**T * A * Q = H \&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER

          It is assumed that A is already upper triangular in rows
          and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are normally
          set by a previous call to SGEBAL; otherwise they should be
          set to 1 and N respectively\&. See Further Details\&.
          1 <= ILO <= IHI <= max(1,N)\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is REAL array, dimension (LDA,N)
          On entry, the n by n general matrix to be reduced\&.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          elements below the first subdiagonal, with the array TAU,
          represent the orthogonal matrix Q as a product of elementary
          reflectors\&. See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is REAL array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is REAL array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of (ihi-ilo) elementary
  reflectors

     Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
  exit in A(i+2:ihi,i), and tau in TAU(i)\&.

  The contents of A are illustrated by the following example, with
  n = 7, ilo = 2 and ihi = 6:

  on entry,                        on exit,

  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
  (                         a )    (                          a )

  where a denotes an element of the original matrix A, h denotes a
  modified element of the upper Hessenberg matrix H, and vi denotes an
  element of the vector defining H(i)\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zgehd2 (integer n, integer ilo, integer ihi, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)"

.PP
\fBZGEHD2\fP reduces a general square matrix to upper Hessenberg form using an unblocked algorithm\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H
 by a unitary similarity transformation:  Q**H * A * Q = H \&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIILO\fP 
.PP
.nf
          ILO is INTEGER
.fi
.PP
.br
\fIIHI\fP 
.PP
.nf
          IHI is INTEGER

          It is assumed that A is already upper triangular in rows
          and columns 1:ILO-1 and IHI+1:N\&. ILO and IHI are normally
          set by a previous call to ZGEBAL; otherwise they should be
          set to 1 and N respectively\&. See Further Details\&.
          1 <= ILO <= IHI <= max(1,N)\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the n by n general matrix to be reduced\&.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          elements below the first subdiagonal, with the array TAU,
          represent the unitary matrix Q as a product of elementary
          reflectors\&. See Further Details\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fITAU\fP 
.PP
.nf
          TAU is COMPLEX*16 array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX*16 array, dimension (N)
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  The matrix Q is represented as a product of (ihi-ilo) elementary
  reflectors

     Q = H(ilo) H(ilo+1) \&. \&. \&. H(ihi-1)\&.

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
  exit in A(i+2:ihi,i), and tau in TAU(i)\&.

  The contents of A are illustrated by the following example, with
  n = 7, ilo = 2 and ihi = 6:

  on entry,                        on exit,

  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
  (                         a )    (                          a )

  where a denotes an element of the original matrix A, h denotes a
  modified element of the upper Hessenberg matrix H, and vi denotes an
  element of the vector defining H(i)\&.
.fi
.PP
 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.