.TH "hbev" 3 "Tue Jan 28 2025 00:54:31" "Version 3.12.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
hbev \- {hb,sb}ev: eig, QR iteration
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "subroutine \fBchbev\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)"
.br
.RI "\fB CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP "
.ti -1c
.RI "subroutine \fBdsbev\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)"
.br
.RI "\fB DSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP "
.ti -1c
.RI "subroutine \fBssbev\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)"
.br
.RI "\fB SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP "
.ti -1c
.RI "subroutine \fBzhbev\fP (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)"
.br
.RI "\fB ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP "
.in -1c
.SH "Detailed Description"
.PP 

.SH "Function Documentation"
.PP 
.SS "subroutine chbev (character jobz, character uplo, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)"

.PP
\fB CHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CHBEV computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian band matrix A\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOBZ\fP 
.PP
.nf
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors\&.
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIKD\fP 
.PP
.nf
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'\&.  KD >= 0\&.
.fi
.PP
.br
\fIAB\fP 
.PP
.nf
          AB is COMPLEX array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array\&.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd)\&.

          On exit, AB is overwritten by values generated during the
          reduction to tridiagonal form\&.  If UPLO = 'U', the first
          superdiagonal and the diagonal of the tridiagonal matrix T
          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
          the diagonal and first subdiagonal of T are returned in the
          first two rows of AB\&.
.fi
.PP
.br
\fILDAB\fP 
.PP
.nf
          LDAB is INTEGER
          The leading dimension of the array AB\&.  LDAB >= KD + 1\&.
.fi
.PP
.br
\fIW\fP 
.PP
.nf
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order\&.
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i)\&.
          If JOBZ = 'N', then Z is not referenced\&.
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
          The leading dimension of the array Z\&.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (N)
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (max(1,3*N-2))
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine dsbev (character jobz, character uplo, integer n, integer kd, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, double precision, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer info)"

.PP
\fB DSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DSBEV computes all the eigenvalues and, optionally, eigenvectors of
 a real symmetric band matrix A\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOBZ\fP 
.PP
.nf
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors\&.
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIKD\fP 
.PP
.nf
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'\&.  KD >= 0\&.
.fi
.PP
.br
\fIAB\fP 
.PP
.nf
          AB is DOUBLE PRECISION array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array\&.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd)\&.

          On exit, AB is overwritten by values generated during the
          reduction to tridiagonal form\&.  If UPLO = 'U', the first
          superdiagonal and the diagonal of the tridiagonal matrix T
          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
          the diagonal and first subdiagonal of T are returned in the
          first two rows of AB\&.
.fi
.PP
.br
\fILDAB\fP 
.PP
.nf
          LDAB is INTEGER
          The leading dimension of the array AB\&.  LDAB >= KD + 1\&.
.fi
.PP
.br
\fIW\fP 
.PP
.nf
          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order\&.
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is DOUBLE PRECISION array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i)\&.
          If JOBZ = 'N', then Z is not referenced\&.
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
          The leading dimension of the array Z\&.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine ssbev (character jobz, character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) w, real, dimension( ldz, * ) z, integer ldz, real, dimension( * ) work, integer info)"

.PP
\fB SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 SSBEV computes all the eigenvalues and, optionally, eigenvectors of
 a real symmetric band matrix A\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOBZ\fP 
.PP
.nf
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors\&.
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIKD\fP 
.PP
.nf
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'\&.  KD >= 0\&.
.fi
.PP
.br
\fIAB\fP 
.PP
.nf
          AB is REAL array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array\&.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd)\&.

          On exit, AB is overwritten by values generated during the
          reduction to tridiagonal form\&.  If UPLO = 'U', the first
          superdiagonal and the diagonal of the tridiagonal matrix T
          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
          the diagonal and first subdiagonal of T are returned in the
          first two rows of AB\&.
.fi
.PP
.br
\fILDAB\fP 
.PP
.nf
          LDAB is INTEGER
          The leading dimension of the array AB\&.  LDAB >= KD + 1\&.
.fi
.PP
.br
\fIW\fP 
.PP
.nf
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order\&.
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is REAL array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i)\&.
          If JOBZ = 'N', then Z is not referenced\&.
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
          The leading dimension of the array Z\&.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is REAL array, dimension (max(1,3*N-2))
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine zhbev (character jobz, character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) w, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)"

.PP
\fB ZHBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices\fP  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHBEV computes all the eigenvalues and, optionally, eigenvectors of
 a complex Hermitian band matrix A\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIJOBZ\fP 
.PP
.nf
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors\&.
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIKD\fP 
.PP
.nf
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'\&.  KD >= 0\&.
.fi
.PP
.br
\fIAB\fP 
.PP
.nf
          AB is COMPLEX*16 array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the Hermitian band
          matrix A, stored in the first KD+1 rows of the array\&.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd)\&.

          On exit, AB is overwritten by values generated during the
          reduction to tridiagonal form\&.  If UPLO = 'U', the first
          superdiagonal and the diagonal of the tridiagonal matrix T
          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
          the diagonal and first subdiagonal of T are returned in the
          first two rows of AB\&.
.fi
.PP
.br
\fILDAB\fP 
.PP
.nf
          LDAB is INTEGER
          The leading dimension of the array AB\&.  LDAB >= KD + 1\&.
.fi
.PP
.br
\fIW\fP 
.PP
.nf
          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order\&.
.fi
.PP
.br
\fIZ\fP 
.PP
.nf
          Z is COMPLEX*16 array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i)\&.
          If JOBZ = 'N', then Z is not referenced\&.
.fi
.PP
.br
\fILDZ\fP 
.PP
.nf
          LDZ is INTEGER
          The leading dimension of the array Z\&.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX*16 array, dimension (N)
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
          = 0:  successful exit\&.
          < 0:  if INFO = -i, the i-th argument had an illegal value\&.
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.