.TH "hemv" 3 "Tue Jan 28 2025 00:54:31" "Version 3.12.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
hemv \- {he,sy}mv: Hermitian/symmetric matrix-vector multiply ([cz]symv in LAPACK)
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "subroutine \fBchemv\fP (uplo, n, alpha, a, lda, x, incx, beta, y, incy)"
.br
.RI "\fBCHEMV\fP "
.ti -1c
.RI "subroutine \fBdsymv\fP (uplo, n, alpha, a, lda, x, incx, beta, y, incy)"
.br
.RI "\fBDSYMV\fP "
.ti -1c
.RI "subroutine \fBssymv\fP (uplo, n, alpha, a, lda, x, incx, beta, y, incy)"
.br
.RI "\fBSSYMV\fP "
.ti -1c
.RI "subroutine \fBzhemv\fP (uplo, n, alpha, a, lda, x, incx, beta, y, incy)"
.br
.RI "\fBZHEMV\fP "
.ti -1c
.RI "subroutine \fBcsymv\fP (uplo, n, alpha, a, lda, x, incx, beta, y, incy)"
.br
.RI "\fBCSYMV\fP computes a matrix-vector product for a complex symmetric matrix\&. "
.ti -1c
.RI "subroutine \fBzsymv\fP (uplo, n, alpha, a, lda, x, incx, beta, y, incy)"
.br
.RI "\fBZSYMV\fP computes a matrix-vector product for a complex symmetric matrix\&. "
.in -1c
.SH "Detailed Description"
.PP 

.SH "Function Documentation"
.PP 
.SS "subroutine chemv (character uplo, integer n, complex alpha, complex, dimension(lda,*) a, integer lda, complex, dimension(*) x, integer incx, complex beta, complex, dimension(*) y, integer incy)"

.PP
\fBCHEMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CHEMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced\&.
           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine csymv (character uplo, integer n, complex alpha, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) x, integer incx, complex beta, complex, dimension( * ) y, integer incy)"

.PP
\fBCSYMV\fP computes a matrix-vector product for a complex symmetric matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CSYMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.

           Unchanged on exit\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension ( LDA, N )
           Before entry, with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the symmetric matrix and the strictly
           lower triangular part of A is not referenced\&.
           Before entry, with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the symmetric matrix and the strictly
           upper triangular part of A is not referenced\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, N )\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX array, dimension at least
           ( 1 + ( N - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the N-
           element vector x\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX array, dimension at least
           ( 1 + ( N - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
           Unchanged on exit\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "subroutine dsymv (character uplo, integer n, double precision alpha, double precision, dimension(lda,*) a, integer lda, double precision, dimension(*) x, integer incx, double precision beta, double precision, dimension(*) y, integer incy)"

.PP
\fBDSYMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DSYMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the symmetric matrix and the strictly
           lower triangular part of A is not referenced\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the symmetric matrix and the strictly
           upper triangular part of A is not referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is DOUBLE PRECISION array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is DOUBLE PRECISION\&.
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is DOUBLE PRECISION array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine ssymv (character uplo, integer n, real alpha, real, dimension(lda,*) a, integer lda, real, dimension(*) x, integer incx, real beta, real, dimension(*) y, integer incy)"

.PP
\fBSSYMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 SSYMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is REAL
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is REAL array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the symmetric matrix and the strictly
           lower triangular part of A is not referenced\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the symmetric matrix and the strictly
           upper triangular part of A is not referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is REAL array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is REAL
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is REAL array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zhemv (character uplo, integer n, complex*16 alpha, complex*16, dimension(lda,*) a, integer lda, complex*16, dimension(*) x, integer incx, complex*16 beta, complex*16, dimension(*) y, integer incy)"

.PP
\fBZHEMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHEMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced\&.
           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX*16
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zsymv (character uplo, integer n, complex*16 alpha, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) x, integer incx, complex*16 beta, complex*16, dimension( * ) y, integer incy)"

.PP
\fBZSYMV\fP computes a matrix-vector product for a complex symmetric matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZSYMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.

           Unchanged on exit\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry, with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the symmetric matrix and the strictly
           lower triangular part of A is not referenced\&.
           Before entry, with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the symmetric matrix and the strictly
           upper triangular part of A is not referenced\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, N )\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( N - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the N-
           element vector x\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX*16
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
           Unchanged on exit\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( N - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
           Unchanged on exit\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.