table of contents
- testing 3.12.0-4
- unstable 3.12.1-2
- experimental 3.12.1-1
hpgst(3) | LAPACK | hpgst(3) |
NAME¶
hpgst - {hp,sp}gst: reduction to standard form, packed
SYNOPSIS¶
Functions¶
subroutine chpgst (itype, uplo, n, ap, bp, info)
CHPGST subroutine dspgst (itype, uplo, n, ap, bp, info)
DSPGST subroutine sspgst (itype, uplo, n, ap, bp, info)
SSPGST subroutine zhpgst (itype, uplo, n, ap, bp, info)
ZHPGST
Detailed Description¶
Function Documentation¶
subroutine chpgst (integer itype, character uplo, integer n, complex, dimension( * ) ap, complex, dimension( * ) bp, integer info)¶
CHPGST
Purpose:
CHPGST reduces a complex Hermitian-definite generalized
eigenproblem to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
B must have been previously factorized as U**H*U or L*L**H by CPPTRF.
Parameters
ITYPE is INTEGER
= 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
= 2 or 3: compute U*A*U**H or L**H*A*L.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**H*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**H.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
AP
AP is COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP
BP is COMPLEX array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by CPPTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dspgst (integer itype, character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) bp, integer info)¶
DSPGST
Purpose:
DSPGST reduces a real symmetric-definite generalized eigenproblem
to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
Parameters
ITYPE is INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
AP
AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP
BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by DPPTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine sspgst (integer itype, character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) bp, integer info)¶
SSPGST
Purpose:
SSPGST reduces a real symmetric-definite generalized eigenproblem
to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
Parameters
ITYPE is INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**T*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**T.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
AP
AP is REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP
BP is REAL array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by SPPTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine zhpgst (integer itype, character uplo, integer n, complex*16, dimension( * ) ap, complex*16, dimension( * ) bp, integer info)¶
ZHPGST
Purpose:
ZHPGST reduces a complex Hermitian-definite generalized
eigenproblem to standard form, using packed storage.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
B must have been previously factorized as U**H*U or L*L**H by ZPPTRF.
Parameters
ITYPE is INTEGER
= 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
= 2 or 3: compute U*A*U**H or L**H*A*L.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored and B is factored as
U**H*U;
= 'L': Lower triangle of A is stored and B is factored as
L*L**H.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, if INFO = 0, the transformed matrix, stored in the
same format as A.
BP
BP is COMPLEX*16 array, dimension (N*(N+1)/2)
The triangular factor from the Cholesky factorization of B,
stored in the same format as A, as returned by ZPPTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Jan 14 2025 16:19:47 | Version 3.12.0 |