.TH "la_gercond" 3 "Tue Jan 28 2025 00:54:31" "Version 3.12.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
la_gercond \- la_gercond: Skeel condition number estimate
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "real function \fBcla_gercond_c\fP (trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)"
.br
.RI "\fBCLA_GERCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices\&. "
.ti -1c
.RI "real function \fBcla_gercond_x\fP (trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)"
.br
.RI "\fBCLA_GERCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for general matrices\&. "
.ti -1c
.RI "double precision function \fBdla_gercond\fP (trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)"
.br
.RI "\fBDLA_GERCOND\fP estimates the Skeel condition number for a general matrix\&. "
.ti -1c
.RI "real function \fBsla_gercond\fP (trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork)"
.br
.RI "\fBSLA_GERCOND\fP estimates the Skeel condition number for a general matrix\&. "
.ti -1c
.RI "double precision function \fBzla_gercond_c\fP (trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)"
.br
.RI "\fBZLA_GERCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices\&. "
.ti -1c
.RI "double precision function \fBzla_gercond_x\fP (trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)"
.br
.RI "\fBZLA_GERCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for general matrices\&. "
.in -1c
.SH "Detailed Description"
.PP 

.SH "Function Documentation"
.PP 
.SS "real function cla_gercond_c (character trans, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( * ) c, logical capply, integer info, complex, dimension( * ) work, real, dimension( * ) rwork)"

.PP
\fBCLA_GERCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    CLA_GERCOND_C computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a REAL vector\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by CGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is REAL array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C))\&.
.fi
.PP
.br
\fICAPPLY\fP 
.PP
.nf
          CAPPLY is LOGICAL
     If \&.TRUE\&. then access the vector C in the formula above\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)\&.
     Workspace\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "real function cla_gercond_x (character trans, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex, dimension( * ) x, integer info, complex, dimension( * ) work, real, dimension( * ) rwork)"

.PP
\fBCLA_GERCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for general matrices\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    CLA_GERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by CGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by CGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX array, dimension (2*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is REAL array, dimension (N)\&.
     Workspace\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "double precision function dla_gercond (character trans, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, integer cmode, double precision, dimension( * ) c, integer info, double precision, dimension( * ) work, integer, dimension( * ) iwork)"

.PP
\fBDLA_GERCOND\fP estimates the Skeel condition number for a general matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    DLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
    where op2 is determined by CMODE as follows
    CMODE =  1    op2(C) = C
    CMODE =  0    op2(C) = I
    CMODE = -1    op2(C) = inv(C)
    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
    is computed by computing scaling factors R such that
    diag(R)*A*op2(C) is row equilibrated and computing the standard
    infinity-norm condition number\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension (LDA,N)
     On entry, the N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is DOUBLE PRECISION array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by DGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by DGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fICMODE\fP 
.PP
.nf
          CMODE is INTEGER
     Determines op2(C) in the formula op(A) * op2(C) as follows:
     CMODE =  1    op2(C) = C
     CMODE =  0    op2(C) = I
     CMODE = -1    op2(C) = inv(C)
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * op2(C)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is DOUBLE PRECISION array, dimension (3*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIIWORK\fP 
.PP
.nf
          IWORK is INTEGER array, dimension (N)\&.
     Workspace\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "real function sla_gercond (character trans, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, integer cmode, real, dimension( * ) c, integer info, real, dimension( * ) work, integer, dimension( * ) iwork)"

.PP
\fBSLA_GERCOND\fP estimates the Skeel condition number for a general matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    SLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
    where op2 is determined by CMODE as follows
    CMODE =  1    op2(C) = C
    CMODE =  0    op2(C) = I
    CMODE = -1    op2(C) = inv(C)
    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
    is computed by computing scaling factors R such that
    diag(R)*A*op2(C) is row equilibrated and computing the standard
    infinity-norm condition number\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is REAL array, dimension (LDA,N)
     On entry, the N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is REAL array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by SGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by SGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fICMODE\fP 
.PP
.nf
          CMODE is INTEGER
     Determines op2(C) in the formula op(A) * op2(C) as follows:
     CMODE =  1    op2(C) = C
     CMODE =  0    op2(C) = I
     CMODE = -1    op2(C) = inv(C)
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is REAL array, dimension (N)
     The vector C in the formula op(A) * op2(C)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is REAL array, dimension (3*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIIWORK\fP 
.PP
.nf
          IWORK is INTEGER array, dimension (N)\&.
     Workspace\&.2
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "double precision function zla_gercond_c (character trans, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( * ) c, logical capply, integer info, complex*16, dimension( * ) work, double precision, dimension( * ) rwork)"

.PP
\fBZLA_GERCOND_C\fP computes the infinity norm condition number of op(A)*inv(diag(c)) for general matrices\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    ZLA_GERCOND_C computes the infinity norm condition number of
    op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX*16 array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by ZGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by ZGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is DOUBLE PRECISION array, dimension (N)
     The vector C in the formula op(A) * inv(diag(C))\&.
.fi
.PP
.br
\fICAPPLY\fP 
.PP
.nf
          CAPPLY is LOGICAL
     If \&.TRUE\&. then access the vector C in the formula above\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX*16 array, dimension (2*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is DOUBLE PRECISION array, dimension (N)\&.
     Workspace\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "double precision function zla_gercond_x (character trans, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex*16, dimension( * ) x, integer info, complex*16, dimension( * ) work, double precision, dimension( * ) rwork)"

.PP
\fBZLA_GERCOND_X\fP computes the infinity norm condition number of op(A)*diag(x) for general matrices\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
    ZLA_GERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX*16 vector\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
     Specifies the form of the system of equations:
       = 'N':  A * X = B     (No transpose)
       = 'T':  A**T * X = B  (Transpose)
       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
     The number of linear equations, i\&.e\&., the order of the
     matrix A\&.  N >= 0\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension (LDA,N)
     On entry, the N-by-N matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
     The leading dimension of the array A\&.  LDA >= max(1,N)\&.
.fi
.PP
.br
\fIAF\fP 
.PP
.nf
          AF is COMPLEX*16 array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by ZGETRF\&.
.fi
.PP
.br
\fILDAF\fP 
.PP
.nf
          LDAF is INTEGER
     The leading dimension of the array AF\&.  LDAF >= max(1,N)\&.
.fi
.PP
.br
\fIIPIV\fP 
.PP
.nf
          IPIV is INTEGER array, dimension (N)
     The pivot indices from the factorization A = P*L*U
     as computed by ZGETRF; row i of the matrix was interchanged
     with row IPIV(i)\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension (N)
     The vector X in the formula op(A) * diag(X)\&.
.fi
.PP
.br
\fIINFO\fP 
.PP
.nf
          INFO is INTEGER
       = 0:  Successful exit\&.
     i > 0:  The ith argument is invalid\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is COMPLEX*16 array, dimension (2*N)\&.
     Workspace\&.
.fi
.PP
.br
\fIRWORK\fP 
.PP
.nf
          RWORK is DOUBLE PRECISION array, dimension (N)\&.
     Workspace\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.