.TH "lanhs" 3 "Tue Jan 28 2025 00:54:31" "Version 3.12.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
lanhs \- lanhs: Hessenberg
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "real function \fBclanhs\fP (norm, n, a, lda, work)"
.br
.RI "\fBCLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&. "
.ti -1c
.RI "double precision function \fBdlanhs\fP (norm, n, a, lda, work)"
.br
.RI "\fBDLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&. "
.ti -1c
.RI "real function \fBslanhs\fP (norm, n, a, lda, work)"
.br
.RI "\fBSLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&. "
.ti -1c
.RI "double precision function \fBzlanhs\fP (norm, n, a, lda, work)"
.br
.RI "\fBZLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&. "
.in -1c
.SH "Detailed Description"
.PP 

.SH "Function Documentation"
.PP 
.SS "real function clanhs (character norm, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) work)"

.PP
\fBCLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 CLANHS  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 Hessenberg matrix A\&.
.fi
.PP
.RE
.PP
\fBReturns\fP
.RS 4
CLANHS 
.PP
.nf
    CLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares)\&.  Note that  max(abs(A(i,j)))  is not a consistent matrix norm\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fINORM\fP 
.PP
.nf
          NORM is CHARACTER*1
          Specifies the value to be returned in CLANHS as described
          above\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.  When N = 0, CLANHS is
          set to zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX array, dimension (LDA,N)
          The n by n upper Hessenberg matrix A; the part of A below the
          first sub-diagonal is not referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(N,1)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
          referenced\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "double precision function dlanhs (character norm, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) work)"

.PP
\fBDLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DLANHS  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 Hessenberg matrix A\&.
.fi
.PP
.RE
.PP
\fBReturns\fP
.RS 4
DLANHS 
.PP
.nf
    DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares)\&.  Note that  max(abs(A(i,j)))  is not a consistent matrix norm\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fINORM\fP 
.PP
.nf
          NORM is CHARACTER*1
          Specifies the value to be returned in DLANHS as described
          above\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.  When N = 0, DLANHS is
          set to zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension (LDA,N)
          The n by n upper Hessenberg matrix A; the part of A below the
          first sub-diagonal is not referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(N,1)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
          referenced\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "real function slanhs (character norm, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) work)"

.PP
\fBSLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 SLANHS  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 Hessenberg matrix A\&.
.fi
.PP
.RE
.PP
\fBReturns\fP
.RS 4
SLANHS 
.PP
.nf
    SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares)\&.  Note that  max(abs(A(i,j)))  is not a consistent matrix norm\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fINORM\fP 
.PP
.nf
          NORM is CHARACTER*1
          Specifies the value to be returned in SLANHS as described
          above\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.  When N = 0, SLANHS is
          set to zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is REAL array, dimension (LDA,N)
          The n by n upper Hessenberg matrix A; the part of A below the
          first sub-diagonal is not referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(N,1)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is REAL array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
          referenced\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SS "double precision function zlanhs (character norm, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) work)"

.PP
\fBZLANHS\fP returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix\&.  
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZLANHS  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 Hessenberg matrix A\&.
.fi
.PP
.RE
.PP
\fBReturns\fP
.RS 4
ZLANHS 
.PP
.nf
    ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares)\&.  Note that  max(abs(A(i,j)))  is not a consistent matrix norm\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fINORM\fP 
.PP
.nf
          NORM is CHARACTER*1
          Specifies the value to be returned in ZLANHS as described
          above\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
          The order of the matrix A\&.  N >= 0\&.  When N = 0, ZLANHS is
          set to zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension (LDA,N)
          The n by n upper Hessenberg matrix A; the part of A below the
          first sub-diagonal is not referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
          The leading dimension of the array A\&.  LDA >= max(N,1)\&.
.fi
.PP
.br
\fIWORK\fP 
.PP
.nf
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
          referenced\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.