.TH "complex16_blas_level2" 3 "Sun Nov 27 2022" "Version 3.11.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
complex16_blas_level2 \- complex16
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "subroutine \fBzgbmv\fP (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)"
.br
.RI "\fBZGBMV\fP "
.ti -1c
.RI "subroutine \fBzgemv\fP (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)"
.br
.RI "\fBZGEMV\fP "
.ti -1c
.RI "subroutine \fBzgerc\fP (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)"
.br
.RI "\fBZGERC\fP "
.ti -1c
.RI "subroutine \fBzgeru\fP (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)"
.br
.RI "\fBZGERU\fP "
.ti -1c
.RI "subroutine \fBzhbmv\fP (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)"
.br
.RI "\fBZHBMV\fP "
.ti -1c
.RI "subroutine \fBzhemv\fP (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)"
.br
.RI "\fBZHEMV\fP "
.ti -1c
.RI "subroutine \fBzher\fP (UPLO, N, ALPHA, X, INCX, A, LDA)"
.br
.RI "\fBZHER\fP "
.ti -1c
.RI "subroutine \fBzher2\fP (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)"
.br
.RI "\fBZHER2\fP "
.ti -1c
.RI "subroutine \fBzhpmv\fP (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)"
.br
.RI "\fBZHPMV\fP "
.ti -1c
.RI "subroutine \fBzhpr\fP (UPLO, N, ALPHA, X, INCX, AP)"
.br
.RI "\fBZHPR\fP "
.ti -1c
.RI "subroutine \fBzhpr2\fP (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)"
.br
.RI "\fBZHPR2\fP "
.ti -1c
.RI "subroutine \fBztbmv\fP (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)"
.br
.RI "\fBZTBMV\fP "
.ti -1c
.RI "subroutine \fBztbsv\fP (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)"
.br
.RI "\fBZTBSV\fP "
.ti -1c
.RI "subroutine \fBztpmv\fP (UPLO, TRANS, DIAG, N, AP, X, INCX)"
.br
.RI "\fBZTPMV\fP "
.ti -1c
.RI "subroutine \fBztpsv\fP (UPLO, TRANS, DIAG, N, AP, X, INCX)"
.br
.RI "\fBZTPSV\fP "
.ti -1c
.RI "subroutine \fBztrmv\fP (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)"
.br
.RI "\fBZTRMV\fP "
.ti -1c
.RI "subroutine \fBztrsv\fP (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)"
.br
.RI "\fBZTRSV\fP "
.in -1c
.SH "Detailed Description"
.PP 
This is the group of complex16 LEVEL 2 BLAS routines\&. 
.SH "Function Documentation"
.PP 
.SS "subroutine zgbmv (character TRANS, integer M, integer N, integer KL, integer KU, complex*16 ALPHA, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX, complex*16 BETA, complex*16, dimension(*) Y, integer INCY)"

.PP
\fBZGBMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZGBMV  performs one of the matrix-vector operations

    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or

    y := alpha*A**H*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n band matrix, with kl sub-diagonals and ku super-diagonals\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y\&.

              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y\&.

              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A\&.
           M must be at least zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIKL\fP 
.PP
.nf
          KL is INTEGER
           On entry, KL specifies the number of sub-diagonals of the
           matrix A\&. KL must satisfy  0 \&.le\&. KL\&.
.fi
.PP
.br
\fIKU\fP 
.PP
.nf
          KU is INTEGER
           On entry, KU specifies the number of super-diagonals of the
           matrix A\&. KU must satisfy  0 \&.le\&. KU\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry, the leading ( kl + ku + 1 ) by n part of the
           array A must contain the matrix of coefficients, supplied
           column by column, with the leading diagonal of the matrix in
           row ( ku + 1 ) of the array, the first super-diagonal
           starting at position 2 in row ku, the first sub-diagonal
           starting at position 1 in row ( ku + 2 ), and so on\&.
           Elements in the array A that do not correspond to elements
           in the band matrix (such as the top left ku by ku triangle)
           are not referenced\&.
           The following program segment will transfer a band matrix
           from conventional full matrix storage to band storage:

                 DO 20, J = 1, N
                    K = KU + 1 - J
                    DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
                       A( K + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           ( kl + ku + 1 )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise\&.
           Before entry, the incremented array X must contain the
           vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX*16
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise\&.
           Before entry, the incremented array Y must contain the
           vector y\&. On exit, Y is overwritten by the updated vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zgemv (character TRANS, integer M, integer N, complex*16 ALPHA, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX, complex*16 BETA, complex*16, dimension(*) Y, integer INCY)"

.PP
\fBZGEMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZGEMV  performs one of the matrix-vector operations

    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,   or

    y := alpha*A**H*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y\&.

              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y\&.

              TRANS = 'C' or 'c'   y := alpha*A**H*x + beta*y\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A\&.
           M must be at least zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry, the leading m by n part of the array A must
           contain the matrix of coefficients\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, m )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise\&.
           Before entry, the incremented array X must contain the
           vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX*16
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise\&.
           Before entry with BETA non-zero, the incremented array Y
           must contain the vector y\&. On exit, Y is overwritten by the
           updated vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zgerc (integer M, integer N, complex*16 ALPHA, complex*16, dimension(*) X, integer INCX, complex*16, dimension(*) Y, integer INCY, complex*16, dimension(lda,*) A, integer LDA)"

.PP
\fBZGERC\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZGERC  performs the rank 1 operation

    A := alpha*x*y**H + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A\&.
           M must be at least zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( m - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the m
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry, the leading m by n part of the array A must
           contain the matrix of coefficients\&. On exit, A is
           overwritten by the updated matrix\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, m )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zgeru (integer M, integer N, complex*16 ALPHA, complex*16, dimension(*) X, integer INCX, complex*16, dimension(*) Y, integer INCY, complex*16, dimension(lda,*) A, integer LDA)"

.PP
\fBZGERU\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZGERU  performs the rank 1 operation

    A := alpha*x*y**T + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry, M specifies the number of rows of the matrix A\&.
           M must be at least zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( m - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the m
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry, the leading m by n part of the array A must
           contain the matrix of coefficients\&. On exit, A is
           overwritten by the updated matrix\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, m )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zhbmv (character UPLO, integer N, integer K, complex*16 ALPHA, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX, complex*16 BETA, complex*16, dimension(*) Y, integer INCY)"

.PP
\fBZHBMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHBMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian band matrix, with k super-diagonals\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the band matrix A is being supplied as
           follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  being supplied\&.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  being supplied\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
           On entry, K specifies the number of super-diagonals of the
           matrix A\&. K must satisfy  0 \&.le\&. K\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the hermitian matrix, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on\&. The top left k by k triangle
           of the array A is not referenced\&.
           The following program segment will transfer the upper
           triangular part of a hermitian band matrix from conventional
           full matrix storage to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the hermitian matrix, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on\&. The bottom right k by k triangle of the
           array A is not referenced\&.
           The following program segment will transfer the lower
           triangular part of a hermitian band matrix from conventional
           full matrix storage to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           ( k + 1 )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the
           vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX*16
           On entry, BETA specifies the scalar beta\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the
           vector y\&. On exit, Y is overwritten by the updated vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zhemv (character UPLO, integer N, complex*16 ALPHA, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX, complex*16 BETA, complex*16, dimension(*) Y, integer INCY)"

.PP
\fBZHEMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHEMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced\&.
           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX*16
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zher (character UPLO, integer N, double precision ALPHA, complex*16, dimension(*) X, integer INCX, complex*16, dimension(lda,*) A, integer LDA)"

.PP
\fBZHER\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHER   performs the hermitian rank 1 operation

    A := alpha*x*x**H + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n hermitian matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced\&. On exit, the
           upper triangular part of the array A is overwritten by the
           upper triangular part of the updated matrix\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced\&. On exit, the
           lower triangular part of the array A is overwritten by the
           lower triangular part of the updated matrix\&.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zher2 (character UPLO, integer N, complex*16 ALPHA, complex*16, dimension(*) X, integer INCX, complex*16, dimension(*) Y, integer INCY, complex*16, dimension(lda,*) A, integer LDA)"

.PP
\fBZHER2\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHER2  performs the hermitian rank 2 operation

    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,

 where alpha is a scalar, x and y are n element vectors and A is an n
 by n hermitian matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the hermitian matrix and the strictly
           lower triangular part of A is not referenced\&. On exit, the
           upper triangular part of the array A is overwritten by the
           upper triangular part of the updated matrix\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the hermitian matrix and the strictly
           upper triangular part of A is not referenced\&. On exit, the
           lower triangular part of the array A is overwritten by the
           lower triangular part of the updated matrix\&.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zhpmv (character UPLO, integer N, complex*16 ALPHA, complex*16, dimension(*) AP, complex*16, dimension(*) X, integer INCX, complex*16 BETA, complex*16, dimension(*) Y, integer INCY)"

.PP
\fBZHPMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHPMV  performs the matrix-vector operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix, supplied in packed form\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP\&.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIAP\fP 
.PP
.nf
          AP is COMPLEX*16 array, dimension at least
           ( ( n*( n + 1 ) )/2 )\&.
           Before entry with UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on\&.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on\&.
           Note that the imaginary parts of the diagonal elements need
           not be set and are assumed to be zero\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is COMPLEX*16
           On entry, BETA specifies the scalar beta\&. When BETA is
           supplied as zero then Y need not be set on input\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&. On exit, Y is overwritten by the updated
           vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zhpr (character UPLO, integer N, double precision ALPHA, complex*16, dimension(*) X, integer INCX, complex*16, dimension(*) AP)"

.PP
\fBZHPR\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHPR    performs the hermitian rank 1 operation

    A := alpha*x*x**H + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n hermitian matrix, supplied in packed form\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP\&.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIAP\fP 
.PP
.nf
          AP is COMPLEX*16 array, dimension at least
           ( ( n*( n + 1 ) )/2 )\&.
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on\&. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix\&.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on\&. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix\&.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine zhpr2 (character UPLO, integer N, complex*16 ALPHA, complex*16, dimension(*) X, integer INCX, complex*16, dimension(*) Y, integer INCY, complex*16, dimension(*) AP)"

.PP
\fBZHPR2\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZHPR2  performs the hermitian rank 2 operation

    A := alpha*x*y**H + conjg( alpha )*y*x**H + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix, supplied in packed form\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the matrix A is supplied in the packed
           array AP as follows:

              UPLO = 'U' or 'u'   The upper triangular part of A is
                                  supplied in AP\&.

              UPLO = 'L' or 'l'   The lower triangular part of A is
                                  supplied in AP\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is COMPLEX*16
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
.br
\fIY\fP 
.PP
.nf
          Y is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCY ) )\&.
           Before entry, the incremented array Y must contain the n
           element vector y\&.
.fi
.PP
.br
\fIINCY\fP 
.PP
.nf
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y\&. INCY must not be zero\&.
.fi
.PP
.br
\fIAP\fP 
.PP
.nf
          AP is COMPLEX*16 array, dimension at least
           ( ( n*( n + 1 ) )/2 )\&.
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
           and a( 2, 2 ) respectively, and so on\&. On exit, the array
           AP is overwritten by the upper triangular part of the
           updated matrix\&.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular part of the hermitian matrix
           packed sequentially, column by column, so that AP( 1 )
           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
           and a( 3, 1 ) respectively, and so on\&. On exit, the array
           AP is overwritten by the lower triangular part of the
           updated matrix\&.
           Note that the imaginary parts of the diagonal elements need
           not be set, they are assumed to be zero, and on exit they
           are set to zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine ztbmv (character UPLO, character TRANS, character DIAG, integer N, integer K, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX)"

.PP
\fBZTBMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZTBMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with ( k + 1 ) diagonals\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x\&.

              TRANS = 'T' or 't'   x := A**T*x\&.

              TRANS = 'C' or 'c'   x := A**H*x\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A\&.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A\&.
           K must satisfy  0 \&.le\&. K\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )\&.
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on\&. The top left k by k triangle
           of the array A is not referenced\&.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on\&. The bottom right k by k triangle of the
           array A is not referenced\&.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           ( k + 1 )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&. On exit, X is overwritten with the
           transformed vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine ztbsv (character UPLO, character TRANS, character DIAG, integer N, integer K, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX)"

.PP
\fBZTBSV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZTBSV  solves one of the systems of equations

    A*x = b,   or   A**T*x = b,   or   A**H*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular band matrix, with ( k + 1 )
 diagonals\&.

 No test for singularity or near-singularity is included in this
 routine\&. Such tests must be performed before calling this routine\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the equations to be solved as
           follows:

              TRANS = 'N' or 'n'   A*x = b\&.

              TRANS = 'T' or 't'   A**T*x = b\&.

              TRANS = 'C' or 'c'   A**H*x = b\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A\&.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A\&.
           K must satisfy  0 \&.le\&. K\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on\&. The top left k by k triangle
           of the array A is not referenced\&.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on\&. The bottom right k by k triangle of the
           array A is not referenced\&.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           ( k + 1 )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element right-hand side vector b\&. On exit, X is overwritten
           with the solution vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine ztpmv (character UPLO, character TRANS, character DIAG, integer N, complex*16, dimension(*) AP, complex*16, dimension(*) X, integer INCX)"

.PP
\fBZTPMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZTPMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular matrix, supplied in packed form\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x\&.

              TRANS = 'T' or 't'   x := A**T*x\&.

              TRANS = 'C' or 'c'   x := A**H*x\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIAP\fP 
.PP
.nf
          AP is COMPLEX*16 array, dimension at least
           ( ( n*( n + 1 ) )/2 )\&.
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
           respectively, and so on\&.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
           respectively, and so on\&.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced, but are assumed to be unity\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&. On exit, X is overwritten with the
           transformed vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine ztpsv (character UPLO, character TRANS, character DIAG, integer N, complex*16, dimension(*) AP, complex*16, dimension(*) X, integer INCX)"

.PP
\fBZTPSV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZTPSV  solves one of the systems of equations

    A*x = b,   or   A**T*x = b,   or   A**H*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix, supplied in packed form\&.

 No test for singularity or near-singularity is included in this
 routine\&. Such tests must be performed before calling this routine\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the equations to be solved as
           follows:

              TRANS = 'N' or 'n'   A*x = b\&.

              TRANS = 'T' or 't'   A**T*x = b\&.

              TRANS = 'C' or 'c'   A**H*x = b\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIAP\fP 
.PP
.nf
          AP is COMPLEX*16 array, dimension at least
           ( ( n*( n + 1 ) )/2 )\&.
           Before entry with  UPLO = 'U' or 'u', the array AP must
           contain the upper triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
           respectively, and so on\&.
           Before entry with UPLO = 'L' or 'l', the array AP must
           contain the lower triangular matrix packed sequentially,
           column by column, so that AP( 1 ) contains a( 1, 1 ),
           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
           respectively, and so on\&.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced, but are assumed to be unity\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element right-hand side vector b\&. On exit, X is overwritten
           with the solution vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine ztrmv (character UPLO, character TRANS, character DIAG, integer N, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX)"

.PP
\fBZTRMV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZTRMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x\&.

              TRANS = 'T' or 't'   x := A**T*x\&.

              TRANS = 'C' or 'c'   x := A**H*x\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )\&.
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular matrix and the strictly lower triangular part of
           A is not referenced\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular matrix and the strictly upper triangular part of
           A is not referenced\&.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced either, but are assumed to be unity\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element vector x\&. On exit, X is overwritten with the
           transformed vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine ztrsv (character UPLO, character TRANS, character DIAG, integer N, complex*16, dimension(lda,*) A, integer LDA, complex*16, dimension(*) X, integer INCX)"

.PP
\fBZTRSV\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 ZTRSV  solves one of the systems of equations

    A*x = b,   or   A**T*x = b,   or   A**H*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix\&.

 No test for singularity or near-singularity is included in this
 routine\&. Such tests must be performed before calling this routine\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry, TRANS specifies the equations to be solved as
           follows:

              TRANS = 'N' or 'n'   A*x = b\&.

              TRANS = 'T' or 't'   A**T*x = b\&.

              TRANS = 'C' or 'c'   A**H*x = b\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the order of the matrix A\&.
           N must be at least zero\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is COMPLEX*16 array, dimension ( LDA, N )
           Before entry with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular matrix and the strictly lower triangular part of
           A is not referenced\&.
           Before entry with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular matrix and the strictly upper triangular part of
           A is not referenced\&.
           Note that when  DIAG = 'U' or 'u', the diagonal elements of
           A are not referenced either, but are assumed to be unity\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. LDA must be at least
           max( 1, n )\&.
.fi
.PP
.br
\fIX\fP 
.PP
.nf
          X is COMPLEX*16 array, dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) )\&.
           Before entry, the incremented array X must contain the n
           element right-hand side vector b\&. On exit, X is overwritten
           with the solution vector x\&.
.fi
.PP
.br
\fIINCX\fP 
.PP
.nf
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X\&. INCX must not be zero\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 2 Blas routine\&.

  -- Written on 22-October-1986\&.
     Jack Dongarra, Argonne National Lab\&.
     Jeremy Du Croz, Nag Central Office\&.
     Sven Hammarling, Nag Central Office\&.
     Richard Hanson, Sandia National Labs\&.
.fi
.PP
 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.