table of contents
OTBCLI_TRAINDIMENSIONALITYREDUCTION(1) | User Commands | OTBCLI_TRAINDIMENSIONALITYREDUCTION(1) |
NAME¶
otbcli_TrainDimensionalityReduction - OTB TrainDimensionalityReduction application
DESCRIPTION¶
This is the Train Dimensionality Reduction (TrainDimensionalityReduction) application, version 6.6.0
Train a dimensionality reduction model Parameters:
- -io
- <group> Input and output data
-io.vd <string> Input Vector Data (mandatory) -io.out <string> Output model (mandatory)
- -io.stats
- <string> Input XML image statistics file (optional, off by default)
-feat <string list> Field names to be used for training. (mandatory)
- -algorithm
- <string> algorithm to use for the training [som/autoencoder/pca] (mandatory, default value is som)
- -algorithm.som.s
- <string list> Map size (optional, off by default, default value is 10
10 )
- -algorithm.som.n
- <string list> Neighborhood sizes (optional, off by default, default value is 3
3 )
- -algorithm.som.ni
- <int32> NumberIteration (optional, off by default, default value is 5)
- -algorithm.som.bi
- <float> BetaInit (optional, off by default, default value is 1)
- -algorithm.som.bf
- <float> BetaFinal (optional, off by default, default value is 0.1)
- -algorithm.som.iv
- <float> InitialValue (optional, off by default, default value is 10)
- -algorithm.autoencoder.nbiter
- <int32> Maximum number of iterations during training (mandatory, default value is 100)
- -algorithm.autoencoder.nbiterfinetuning <int32>
- Maximum number of iterations during training (mandatory, default value is 0)
- -algorithm.autoencoder.epsilon
- <float> Epsilon (mandatory, default value is 0)
- -algorithm.autoencoder.initfactor
- <float> Weight initialization factor (mandatory, default value is 1)
- -algorithm.autoencoder.nbneuron
- <string list> Size (mandatory)
- -algorithm.autoencoder.regularization
- <string list> Strength of the regularization (mandatory)
- -algorithm.autoencoder.noise
- <string list> Strength of the noise (mandatory)
- -algorithm.autoencoder.rho
- <string list> Sparsity parameter (mandatory)
- -algorithm.autoencoder.beta
- <string list> Sparsity regularization strength (mandatory)
- -algorithm.autoencoder.learningcurve
- <string> Learning curve (optional, off by default)
- -algorithm.pca.dim
- <int32> Dimension of the output of the pca transformation (mandatory, default value is 10)
- -ram
- <int32> Available RAM (Mb) (optional, off by default, default value is 128)
- -inxml
- <string> Load otb application from xml file (optional, off by default)
- -progress
- <boolean> Report progress
- -help
- <string list> Display long help (empty list), or help for given parameters keys
Use -help param1 [... paramN] to see detailed documentation of those parameters.
EXAMPLES¶
otbcli_TrainDimensionalityReduction -io.vd cuprite_samples.sqlite -io.out mode.ae -algorithm pca -algorithm.pca.dim 8 -feat value_0 value_1 value_2 value_3 value_4 value_5 value_6 value_7 value_8 value_9
June 2018 | otbcli_TrainDimensionalityReduction 6.6.0 |