table of contents
- bookworm 3.11.0-2
doubleGTcomputational(3) | LAPACK | doubleGTcomputational(3) |
NAME¶
doubleGTcomputational - double
SYNOPSIS¶
Functions¶
subroutine dgtcon (NORM, N, DL, D, DU, DU2, IPIV, ANORM,
RCOND, WORK, IWORK, INFO)
DGTCON subroutine dgtrfs (TRANS, N, NRHS, DL, D, DU, DLF, DF,
DUF, DU2, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
DGTRFS subroutine dgttrf (N, DL, D, DU, DU2, IPIV, INFO)
DGTTRF subroutine dgttrs (TRANS, N, NRHS, DL, D, DU, DU2, IPIV,
B, LDB, INFO)
DGTTRS subroutine dgtts2 (ITRANS, N, NRHS, DL, D, DU, DU2, IPIV,
B, LDB)
DGTTS2 solves a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf.
Detailed Description¶
This is the group of double computational functions for GT matrices
Function Documentation¶
subroutine dgtcon (character NORM, integer N, double precision, dimension( * ) DL, double precision, dimension( * ) D, double precision, dimension( * ) DU, double precision, dimension( * ) DU2, integer, dimension( * ) IPIV, double precision ANORM, double precision RCOND, double precision, dimension( * ) WORK, integer, dimension( * ) IWORK, integer INFO)¶
DGTCON
Purpose:
DGTCON estimates the reciprocal of the condition number of a real
tridiagonal matrix A using the LU factorization as computed by
DGTTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters
NORM is CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N
N is INTEGER
The order of the matrix A. N >= 0.
DL
DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by DGTTRF.
D
D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU
DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2
DU2 is DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
ANORM
ANORM is DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
RCOND
RCOND is DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is DOUBLE PRECISION array, dimension (2*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dgtrfs (character TRANS, integer N, integer NRHS, double precision, dimension( * ) DL, double precision, dimension( * ) D, double precision, dimension( * ) DU, double precision, dimension( * ) DLF, double precision, dimension( * ) DF, double precision, dimension( * ) DUF, double precision, dimension( * ) DU2, integer, dimension( * ) IPIV, double precision, dimension( ldb, * ) B, integer LDB, double precision, dimension( ldx, * ) X, integer LDX, double precision, dimension( * ) FERR, double precision, dimension( * ) BERR, double precision, dimension( * ) WORK, integer, dimension( * ) IWORK, integer INFO)¶
DGTRFS
Purpose:
DGTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is tridiagonal, and provides
error bounds and backward error estimates for the solution.
Parameters
TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL
DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of A.
D
D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
DU
DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) superdiagonal elements of A.
DLF
DLF is DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A as computed by DGTTRF.
DF
DF is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DUF
DUF is DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first superdiagonal of U.
DU2
DU2 is DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second superdiagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DGTTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dgttrf (integer N, double precision, dimension( * ) DL, double precision, dimension( * ) D, double precision, dimension( * ) DU, double precision, dimension( * ) DU2, integer, dimension( * ) IPIV, integer INFO)¶
DGTTRF
Purpose:
DGTTRF computes an LU factorization of a real tridiagonal matrix A
using elimination with partial pivoting and row interchanges.
The factorization has the form
A = L * U
where L is a product of permutation and unit lower bidiagonal
matrices and U is upper triangular with nonzeros in only the main
diagonal and first two superdiagonals.
Parameters
N is INTEGER
The order of the matrix A.
DL
DL is DOUBLE PRECISION array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.
On exit, DL is overwritten by the (n-1) multipliers that
define the matrix L from the LU factorization of A.
D
D is DOUBLE PRECISION array, dimension (N)
On entry, D must contain the diagonal elements of A.
On exit, D is overwritten by the n diagonal elements of the
upper triangular matrix U from the LU factorization of A.
DU
DU is DOUBLE PRECISION array, dimension (N-1)
On entry, DU must contain the (n-1) super-diagonal elements
of A.
On exit, DU is overwritten by the (n-1) elements of the first
super-diagonal of U.
DU2
DU2 is DOUBLE PRECISION array, dimension (N-2)
On exit, DU2 is overwritten by the (n-2) elements of the
second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, U(k,k) is exactly zero. The factorization
has been completed, but the factor U is exactly
singular, and division by zero will occur if it is used
to solve a system of equations.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dgttrs (character TRANS, integer N, integer NRHS, double precision, dimension( * ) DL, double precision, dimension( * ) D, double precision, dimension( * ) DU, double precision, dimension( * ) DU2, integer, dimension( * ) IPIV, double precision, dimension( ldb, * ) B, integer LDB, integer INFO)¶
DGTTRS
Purpose:
DGTTRS solves one of the systems of equations
A*X = B or A**T*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.
Parameters
TRANS is CHARACTER*1
Specifies the form of the system of equations.
= 'N': A * X = B (No transpose)
= 'T': A**T* X = B (Transpose)
= 'C': A**T* X = B (Conjugate transpose = Transpose)
N
N is INTEGER
The order of the matrix A.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL
DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D
D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU
DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2
DU2 is DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dgtts2 (integer ITRANS, integer N, integer NRHS, double precision, dimension( * ) DL, double precision, dimension( * ) D, double precision, dimension( * ) DU, double precision, dimension( * ) DU2, integer, dimension( * ) IPIV, double precision, dimension( ldb, * ) B, integer LDB)¶
DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
Purpose:
DGTTS2 solves one of the systems of equations
A*X = B or A**T*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.
Parameters
ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T* X = B (Transpose)
= 2: A**T* X = B (Conjugate transpose = Transpose)
N
N is INTEGER
The order of the matrix A.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL
DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.
D
D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU
DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.
DU2
DU2 is DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Sun Nov 27 2022 | Version 3.11.0 |