.TH "double_blas_level3" 3 "Sun Nov 27 2022" "Version 3.11.0" "LAPACK" \" -*- nroff -*-
.ad l
.nh
.SH NAME
double_blas_level3 \- double
.SH SYNOPSIS
.br
.PP
.SS "Functions"

.in +1c
.ti -1c
.RI "subroutine \fBdgemm\fP (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)"
.br
.RI "\fBDGEMM\fP "
.ti -1c
.RI "subroutine \fBdsymm\fP (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)"
.br
.RI "\fBDSYMM\fP "
.ti -1c
.RI "subroutine \fBdsyr2k\fP (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)"
.br
.RI "\fBDSYR2K\fP "
.ti -1c
.RI "subroutine \fBdsyrk\fP (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)"
.br
.RI "\fBDSYRK\fP "
.ti -1c
.RI "subroutine \fBdtrmm\fP (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)"
.br
.RI "\fBDTRMM\fP "
.ti -1c
.RI "subroutine \fBdtrsm\fP (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)"
.br
.RI "\fBDTRSM\fP "
.in -1c
.SH "Detailed Description"
.PP 
This is the group of double LEVEL 3 BLAS routines\&. 
.SH "Function Documentation"
.PP 
.SS "subroutine dgemm (character TRANSA, character TRANSB, integer M, integer N, integer K, double precision ALPHA, double precision, dimension(lda,*) A, integer LDA, double precision, dimension(ldb,*) B, integer LDB, double precision BETA, double precision, dimension(ldc,*) C, integer LDC)"

.PP
\fBDGEMM\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DGEMM  performs one of the matrix-matrix operations

    C := alpha*op( A )*op( B ) + beta*C,

 where  op( X ) is one of

    op( X ) = X   or   op( X ) = X**T,

 alpha and beta are scalars, and A, B and C are matrices, with op( A )
 an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fITRANSA\fP 
.PP
.nf
          TRANSA is CHARACTER*1
           On entry, TRANSA specifies the form of op( A ) to be used in
           the matrix multiplication as follows:

              TRANSA = 'N' or 'n',  op( A ) = A\&.

              TRANSA = 'T' or 't',  op( A ) = A**T\&.

              TRANSA = 'C' or 'c',  op( A ) = A**T\&.
.fi
.PP
.br
\fITRANSB\fP 
.PP
.nf
          TRANSB is CHARACTER*1
           On entry, TRANSB specifies the form of op( B ) to be used in
           the matrix multiplication as follows:

              TRANSB = 'N' or 'n',  op( B ) = B\&.

              TRANSB = 'T' or 't',  op( B ) = B**T\&.

              TRANSB = 'C' or 'c',  op( B ) = B**T\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry,  M  specifies  the number  of rows  of the  matrix
           op( A )  and of the  matrix  C\&.  M  must  be at least  zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry,  N  specifies the number  of columns of the matrix
           op( B ) and the number of columns of the matrix C\&. N must be
           at least zero\&.
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
           On entry,  K  specifies  the number of columns of the matrix
           op( A ) and the number of rows of the matrix op( B )\&. K must
           be at least  zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
           k  when  TRANSA = 'N' or 'n',  and is  m  otherwise\&.
           Before entry with  TRANSA = 'N' or 'n',  the leading  m by k
           part of the array  A  must contain the matrix  A,  otherwise
           the leading  k by m  part of the array  A  must contain  the
           matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&. When  TRANSA = 'N' or 'n' then
           LDA must be at least  max( 1, m ), otherwise  LDA must be at
           least  max( 1, k )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is
           n  when  TRANSB = 'N' or 'n',  and is  k  otherwise\&.
           Before entry with  TRANSB = 'N' or 'n',  the leading  k by n
           part of the array  B  must contain the matrix  B,  otherwise
           the leading  n by k  part of the array  B  must contain  the
           matrix B\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in the calling (sub) program\&. When  TRANSB = 'N' or 'n' then
           LDB must be at least  max( 1, k ), otherwise  LDB must be at
           least  max( 1, n )\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is DOUBLE PRECISION\&.
           On entry,  BETA  specifies the scalar  beta\&.  When  BETA  is
           supplied as zero then C need not be set on input\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is DOUBLE PRECISION array, dimension ( LDC, N )
           Before entry, the leading  m by n  part of the array  C must
           contain the matrix  C,  except when  beta  is zero, in which
           case C need not be set on entry\&.
           On exit, the array  C  is overwritten by the  m by n  matrix
           ( alpha*op( A )*op( B ) + beta*C )\&.
.fi
.PP
.br
\fILDC\fP 
.PP
.nf
          LDC is INTEGER
           On entry, LDC specifies the first dimension of C as declared
           in  the  calling  (sub)  program\&.   LDC  must  be  at  least
           max( 1, m )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 3 Blas routine\&.

  -- Written on 8-February-1989\&.
     Jack Dongarra, Argonne National Laboratory\&.
     Iain Duff, AERE Harwell\&.
     Jeremy Du Croz, Numerical Algorithms Group Ltd\&.
     Sven Hammarling, Numerical Algorithms Group Ltd\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine dsymm (character SIDE, character UPLO, integer M, integer N, double precision ALPHA, double precision, dimension(lda,*) A, integer LDA, double precision, dimension(ldb,*) B, integer LDB, double precision BETA, double precision, dimension(ldc,*) C, integer LDC)"

.PP
\fBDSYMM\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DSYMM  performs one of the matrix-matrix operations

    C := alpha*A*B + beta*C,

 or

    C := alpha*B*A + beta*C,

 where alpha and beta are scalars,  A is a symmetric matrix and  B and
 C are  m by n matrices\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fISIDE\fP 
.PP
.nf
          SIDE is CHARACTER*1
           On entry,  SIDE  specifies whether  the  symmetric matrix  A
           appears on the  left or right  in the  operation as follows:

              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,

              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On  entry,   UPLO  specifies  whether  the  upper  or  lower
           triangular  part  of  the  symmetric  matrix   A  is  to  be
           referenced as follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of the
                                  symmetric matrix is to be referenced\&.

              UPLO = 'L' or 'l'   Only the lower triangular part of the
                                  symmetric matrix is to be referenced\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry,  M  specifies the number of rows of the matrix  C\&.
           M  must be at least zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of the matrix C\&.
           N  must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
           m  when  SIDE = 'L' or 'l'  and is  n otherwise\&.
           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
           the array  A  must contain the  symmetric matrix,  such that
           when  UPLO = 'U' or 'u', the leading m by m upper triangular
           part of the array  A  must contain the upper triangular part
           of the  symmetric matrix and the  strictly  lower triangular
           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
           the leading  m by m  lower triangular part  of the  array  A
           must  contain  the  lower triangular part  of the  symmetric
           matrix and the  strictly upper triangular part of  A  is not
           referenced\&.
           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
           the array  A  must contain the  symmetric matrix,  such that
           when  UPLO = 'U' or 'u', the leading n by n upper triangular
           part of the array  A  must contain the upper triangular part
           of the  symmetric matrix and the  strictly  lower triangular
           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
           the leading  n by n  lower triangular part  of the  array  A
           must  contain  the  lower triangular part  of the  symmetric
           matrix and the  strictly upper triangular part of  A  is not
           referenced\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&.  When  SIDE = 'L' or 'l'  then
           LDA must be at least  max( 1, m ), otherwise  LDA must be at
           least  max( 1, n )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is DOUBLE PRECISION array, dimension ( LDB, N )
           Before entry, the leading  m by n part of the array  B  must
           contain the matrix B\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in  the  calling  (sub)  program\&.   LDB  must  be  at  least
           max( 1, m )\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is DOUBLE PRECISION\&.
           On entry,  BETA  specifies the scalar  beta\&.  When  BETA  is
           supplied as zero then C need not be set on input\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is DOUBLE PRECISION array, dimension ( LDC, N )
           Before entry, the leading  m by n  part of the array  C must
           contain the matrix  C,  except when  beta  is zero, in which
           case C need not be set on entry\&.
           On exit, the array  C  is overwritten by the  m by n updated
           matrix\&.
.fi
.PP
.br
\fILDC\fP 
.PP
.nf
          LDC is INTEGER
           On entry, LDC specifies the first dimension of C as declared
           in  the  calling  (sub)  program\&.   LDC  must  be  at  least
           max( 1, m )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 3 Blas routine\&.

  -- Written on 8-February-1989\&.
     Jack Dongarra, Argonne National Laboratory\&.
     Iain Duff, AERE Harwell\&.
     Jeremy Du Croz, Numerical Algorithms Group Ltd\&.
     Sven Hammarling, Numerical Algorithms Group Ltd\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine dsyr2k (character UPLO, character TRANS, integer N, integer K, double precision ALPHA, double precision, dimension(lda,*) A, integer LDA, double precision, dimension(ldb,*) B, integer LDB, double precision BETA, double precision, dimension(ldc,*) C, integer LDC)"

.PP
\fBDSYR2K\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DSYR2K  performs one of the symmetric rank 2k operations

    C := alpha*A*B**T + alpha*B*A**T + beta*C,

 or

    C := alpha*A**T*B + alpha*B**T*A + beta*C,

 where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
 and  A and B  are  n by k  matrices  in the  first  case  and  k by n
 matrices in the second case\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On  entry,   UPLO  specifies  whether  the  upper  or  lower
           triangular  part  of the  array  C  is to be  referenced  as
           follows:

              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
                                  is to be referenced\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry,  TRANS  specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   C := alpha*A*B**T + alpha*B*A**T +
                                        beta*C\&.

              TRANS = 'T' or 't'   C := alpha*A**T*B + alpha*B**T*A +
                                        beta*C\&.

              TRANS = 'C' or 'c'   C := alpha*A**T*B + alpha*B**T*A +
                                        beta*C\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry,  N specifies the order of the matrix C\&.  N must be
           at least zero\&.
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
           of  columns  of the  matrices  A and B,  and on  entry  with
           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
           of rows of the matrices  A and B\&.  K must be at least  zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
           k  when  TRANS = 'N' or 'n',  and is  n  otherwise\&.
           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
           part of the array  A  must contain the matrix  A,  otherwise
           the leading  k by n  part of the array  A  must contain  the
           matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in  the  calling  (sub)  program\&.   When  TRANS = 'N' or 'n'
           then  LDA must be at least  max( 1, n ), otherwise  LDA must
           be at least  max( 1, k )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is
           k  when  TRANS = 'N' or 'n',  and is  n  otherwise\&.
           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
           part of the array  B  must contain the matrix  B,  otherwise
           the leading  k by n  part of the array  B  must contain  the
           matrix B\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in  the  calling  (sub)  program\&.   When  TRANS = 'N' or 'n'
           then  LDB must be at least  max( 1, n ), otherwise  LDB must
           be at least  max( 1, k )\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is DOUBLE PRECISION\&.
           On entry, BETA specifies the scalar beta\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is DOUBLE PRECISION array, dimension ( LDC, N )
           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
           upper triangular part of the array C must contain the upper
           triangular part  of the  symmetric matrix  and the strictly
           lower triangular part of C is not referenced\&.  On exit, the
           upper triangular part of the array  C is overwritten by the
           upper triangular part of the updated matrix\&.
           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
           lower triangular part of the array C must contain the lower
           triangular part  of the  symmetric matrix  and the strictly
           upper triangular part of C is not referenced\&.  On exit, the
           lower triangular part of the array  C is overwritten by the
           lower triangular part of the updated matrix\&.
.fi
.PP
.br
\fILDC\fP 
.PP
.nf
          LDC is INTEGER
           On entry, LDC specifies the first dimension of C as declared
           in  the  calling  (sub)  program\&.   LDC  must  be  at  least
           max( 1, n )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 3 Blas routine\&.


  -- Written on 8-February-1989\&.
     Jack Dongarra, Argonne National Laboratory\&.
     Iain Duff, AERE Harwell\&.
     Jeremy Du Croz, Numerical Algorithms Group Ltd\&.
     Sven Hammarling, Numerical Algorithms Group Ltd\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine dsyrk (character UPLO, character TRANS, integer N, integer K, double precision ALPHA, double precision, dimension(lda,*) A, integer LDA, double precision BETA, double precision, dimension(ldc,*) C, integer LDC)"

.PP
\fBDSYRK\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DSYRK  performs one of the symmetric rank k operations

    C := alpha*A*A**T + beta*C,

 or

    C := alpha*A**T*A + beta*C,

 where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
 and  A  is an  n by k  matrix in the first case and a  k by n  matrix
 in the second case\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On  entry,   UPLO  specifies  whether  the  upper  or  lower
           triangular  part  of the  array  C  is to be  referenced  as
           follows:

              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
                                  is to be referenced\&.

              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
                                  is to be referenced\&.
.fi
.PP
.br
\fITRANS\fP 
.PP
.nf
          TRANS is CHARACTER*1
           On entry,  TRANS  specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C\&.

              TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C\&.

              TRANS = 'C' or 'c'   C := alpha*A**T*A + beta*C\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry,  N specifies the order of the matrix C\&.  N must be
           at least zero\&.
.fi
.PP
.br
\fIK\fP 
.PP
.nf
          K is INTEGER
           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
           of  columns   of  the   matrix   A,   and  on   entry   with
           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
           of rows of the matrix  A\&.  K must be at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry, ALPHA specifies the scalar alpha\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
           k  when  TRANS = 'N' or 'n',  and is  n  otherwise\&.
           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
           part of the array  A  must contain the matrix  A,  otherwise
           the leading  k by n  part of the array  A  must contain  the
           matrix A\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in  the  calling  (sub)  program\&.   When  TRANS = 'N' or 'n'
           then  LDA must be at least  max( 1, n ), otherwise  LDA must
           be at least  max( 1, k )\&.
.fi
.PP
.br
\fIBETA\fP 
.PP
.nf
          BETA is DOUBLE PRECISION\&.
           On entry, BETA specifies the scalar beta\&.
.fi
.PP
.br
\fIC\fP 
.PP
.nf
          C is DOUBLE PRECISION array, dimension ( LDC, N )
           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
           upper triangular part of the array C must contain the upper
           triangular part  of the  symmetric matrix  and the strictly
           lower triangular part of C is not referenced\&.  On exit, the
           upper triangular part of the array  C is overwritten by the
           upper triangular part of the updated matrix\&.
           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
           lower triangular part of the array C must contain the lower
           triangular part  of the  symmetric matrix  and the strictly
           upper triangular part of C is not referenced\&.  On exit, the
           lower triangular part of the array  C is overwritten by the
           lower triangular part of the updated matrix\&.
.fi
.PP
.br
\fILDC\fP 
.PP
.nf
          LDC is INTEGER
           On entry, LDC specifies the first dimension of C as declared
           in  the  calling  (sub)  program\&.   LDC  must  be  at  least
           max( 1, n )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 3 Blas routine\&.

  -- Written on 8-February-1989\&.
     Jack Dongarra, Argonne National Laboratory\&.
     Iain Duff, AERE Harwell\&.
     Jeremy Du Croz, Numerical Algorithms Group Ltd\&.
     Sven Hammarling, Numerical Algorithms Group Ltd\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine dtrmm (character SIDE, character UPLO, character TRANSA, character DIAG, integer M, integer N, double precision ALPHA, double precision, dimension(lda,*) A, integer LDA, double precision, dimension(ldb,*) B, integer LDB)"

.PP
\fBDTRMM\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DTRMM  performs one of the matrix-matrix operations

    B := alpha*op( A )*B,   or   B := alpha*B*op( A ),

 where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or
 non-unit,  upper or lower triangular matrix  and  op( A )  is one  of

    op( A ) = A   or   op( A ) = A**T\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fISIDE\fP 
.PP
.nf
          SIDE is CHARACTER*1
           On entry,  SIDE specifies whether  op( A ) multiplies B from
           the left or right as follows:

              SIDE = 'L' or 'l'   B := alpha*op( A )*B\&.

              SIDE = 'R' or 'r'   B := alpha*B*op( A )\&.
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix A is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANSA\fP 
.PP
.nf
          TRANSA is CHARACTER*1
           On entry, TRANSA specifies the form of op( A ) to be used in
           the matrix multiplication as follows:

              TRANSA = 'N' or 'n'   op( A ) = A\&.

              TRANSA = 'T' or 't'   op( A ) = A**T\&.

              TRANSA = 'C' or 'c'   op( A ) = A**T\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit triangular
           as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry, M specifies the number of rows of B\&. M must be at
           least zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of B\&.  N must be
           at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry,  ALPHA specifies the scalar  alpha\&. When  alpha is
           zero then  A is not referenced and  B need not be set before
           entry\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
           A is DOUBLE PRECISION array, dimension ( LDA, k ), where k is m
           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'\&.
           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
           upper triangular part of the array  A must contain the upper
           triangular matrix  and the strictly lower triangular part of
           A is not referenced\&.
           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
           lower triangular part of the array  A must contain the lower
           triangular matrix  and the strictly upper triangular part of
           A is not referenced\&.
           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
           A  are not referenced either,  but are assumed to be  unity\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&.  When  SIDE = 'L' or 'l'  then
           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
           then LDA must be at least max( 1, n )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is DOUBLE PRECISION array, dimension ( LDB, N )
           Before entry,  the leading  m by n part of the array  B must
           contain the matrix  B,  and  on exit  is overwritten  by the
           transformed matrix\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in  the  calling  (sub)  program\&.   LDB  must  be  at  least
           max( 1, m )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 3 Blas routine\&.

  -- Written on 8-February-1989\&.
     Jack Dongarra, Argonne National Laboratory\&.
     Iain Duff, AERE Harwell\&.
     Jeremy Du Croz, Numerical Algorithms Group Ltd\&.
     Sven Hammarling, Numerical Algorithms Group Ltd\&.
.fi
.PP
 
.RE
.PP

.SS "subroutine dtrsm (character SIDE, character UPLO, character TRANSA, character DIAG, integer M, integer N, double precision ALPHA, double precision, dimension(lda,*) A, integer LDA, double precision, dimension(ldb,*) B, integer LDB)"

.PP
\fBDTRSM\fP 
.PP
\fBPurpose:\fP
.RS 4

.PP
.nf
 DTRSM  solves one of the matrix equations

    op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,

 where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 non-unit,  upper or lower triangular matrix  and  op( A )  is one  of

    op( A ) = A   or   op( A ) = A**T\&.

 The matrix X is overwritten on B\&.
.fi
.PP
 
.RE
.PP
\fBParameters\fP
.RS 4
\fISIDE\fP 
.PP
.nf
          SIDE is CHARACTER*1
           On entry, SIDE specifies whether op( A ) appears on the left
           or right of X as follows:

              SIDE = 'L' or 'l'   op( A )*X = alpha*B\&.

              SIDE = 'R' or 'r'   X*op( A ) = alpha*B\&.
.fi
.PP
.br
\fIUPLO\fP 
.PP
.nf
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix A is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix\&.

              UPLO = 'L' or 'l'   A is a lower triangular matrix\&.
.fi
.PP
.br
\fITRANSA\fP 
.PP
.nf
          TRANSA is CHARACTER*1
           On entry, TRANSA specifies the form of op( A ) to be used in
           the matrix multiplication as follows:

              TRANSA = 'N' or 'n'   op( A ) = A\&.

              TRANSA = 'T' or 't'   op( A ) = A**T\&.

              TRANSA = 'C' or 'c'   op( A ) = A**T\&.
.fi
.PP
.br
\fIDIAG\fP 
.PP
.nf
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit triangular
           as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular\&.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular\&.
.fi
.PP
.br
\fIM\fP 
.PP
.nf
          M is INTEGER
           On entry, M specifies the number of rows of B\&. M must be at
           least zero\&.
.fi
.PP
.br
\fIN\fP 
.PP
.nf
          N is INTEGER
           On entry, N specifies the number of columns of B\&.  N must be
           at least zero\&.
.fi
.PP
.br
\fIALPHA\fP 
.PP
.nf
          ALPHA is DOUBLE PRECISION\&.
           On entry,  ALPHA specifies the scalar  alpha\&. When  alpha is
           zero then  A is not referenced and  B need not be set before
           entry\&.
.fi
.PP
.br
\fIA\fP 
.PP
.nf
          A is DOUBLE PRECISION array, dimension ( LDA, k ),
           where k is m when SIDE = 'L' or 'l'
             and k is n when SIDE = 'R' or 'r'\&.
           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
           upper triangular part of the array  A must contain the upper
           triangular matrix  and the strictly lower triangular part of
           A is not referenced\&.
           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
           lower triangular part of the array  A must contain the lower
           triangular matrix  and the strictly upper triangular part of
           A is not referenced\&.
           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
           A  are not referenced either,  but are assumed to be  unity\&.
.fi
.PP
.br
\fILDA\fP 
.PP
.nf
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program\&.  When  SIDE = 'L' or 'l'  then
           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
           then LDA must be at least max( 1, n )\&.
.fi
.PP
.br
\fIB\fP 
.PP
.nf
          B is DOUBLE PRECISION array, dimension ( LDB, N )
           Before entry,  the leading  m by n part of the array  B must
           contain  the  right-hand  side  matrix  B,  and  on exit  is
           overwritten by the solution matrix  X\&.
.fi
.PP
.br
\fILDB\fP 
.PP
.nf
          LDB is INTEGER
           On entry, LDB specifies the first dimension of B as declared
           in  the  calling  (sub)  program\&.   LDB  must  be  at  least
           max( 1, m )\&.
.fi
.PP
 
.RE
.PP
\fBAuthor\fP
.RS 4
Univ\&. of Tennessee 
.PP
Univ\&. of California Berkeley 
.PP
Univ\&. of Colorado Denver 
.PP
NAG Ltd\&. 
.RE
.PP
\fBFurther Details:\fP
.RS 4

.PP
.nf
  Level 3 Blas routine\&.


  -- Written on 8-February-1989\&.
     Jack Dongarra, Argonne National Laboratory\&.
     Iain Duff, AERE Harwell\&.
     Jeremy Du Croz, Numerical Algorithms Group Ltd\&.
     Sven Hammarling, Numerical Algorithms Group Ltd\&.
.fi
.PP
 
.RE
.PP

.SH "Author"
.PP 
Generated automatically by Doxygen for LAPACK from the source code\&.