table of contents
| std::tr1(3cxx) | std::tr1(3cxx) |
NAME¶
std::tr1 - ISO C++ TR1 entities toplevel namespace is std::tr1.
SYNOPSIS¶
Namespaces¶
namespace __detail
Implementation details not part of the namespace std::tr1 interface.
Functions¶
template<typename _Tp> std::complex< _Tp >
acos (const std::complex< _Tp > &)
template<typename _Tp> std::complex< _Tp > acosh
(const std::complex< _Tp > &)
template<typename _Tp> _Tp arg (const complex< _Tp >
&)
Return phase angle of z. template<typename _Tp>
std::complex< _Tp > asin (const std::complex<
_Tp > &)
template<typename _Tp> std::complex< _Tp > asinh
(const std::complex< _Tp > &)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
assoc_laguerre (unsigned int __n, unsigned int __m, _Tp __x)
5.2.1.1 Associated Laguerre polynomials. float assoc_laguerref
(unsigned int __n, unsigned int __m, float __x)
long double assoc_laguerrel (unsigned int __n, unsigned int __m, long
double __x)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
assoc_legendre (unsigned int __l, unsigned int __m, _Tp __x)
5.2.1.2 Associated Legendre functions. float assoc_legendref (unsigned
int __l, unsigned int __m, float __x)
long double assoc_legendrel (unsigned int __l, unsigned int __m, long
double __x)
template<typename _Tp> std::complex< _Tp > atan
(const std::complex< _Tp > &)
template<typename _Tp> std::complex< _Tp > atanh
(const std::complex< _Tp > &)
template<typename _Tpx, typename _Tpy> __gnu_cxx::__promote_2< _Tpx,
_Tpy >::__type beta (_Tpx __x, _Tpy __y)
5.2.1.3 Beta functions. float betaf (float __x, float __y)
long double betal (long double __x, long double __y)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
comp_ellint_1 (_Tp __k)
5.2.1.4 Complete elliptic integrals of the first kind. float
comp_ellint_1f (float __k)
long double comp_ellint_1l (long double __k)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
comp_ellint_2 (_Tp __k)
5.2.1.5 Complete elliptic integrals of the second kind. float
comp_ellint_2f (float __k)
long double comp_ellint_2l (long double __k)
template<typename _Tp, typename _Tpn> __gnu_cxx::__promote_2< _Tp,
_Tpn >::__type comp_ellint_3 (_Tp __k, _Tpn __nu)
5.2.1.6 Complete elliptic integrals of the third kind. float
comp_ellint_3f (float __k, float __nu)
long double comp_ellint_3l (long double __k, long double __nu)
template<typename _Tpa, typename _Tpc, typename _Tp>
__gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type conf_hyperg
(_Tpa __a, _Tpc __c, _Tp __x)
float conf_hypergf (float __a, float __c, float __x)
long double conf_hypergl (long double __a, long double __c, long double
__x)
template<typename _Tp> std::complex< typename
__gnu_cxx::__promote< _Tp >::__type > conj (_Tp __x)
template<typename _Tp> std::complex< _Tp > conj
(const std::complex< _Tp > &__z)
template<typename _Tpnu, typename _Tp> __gnu_cxx::__promote_2< _Tpnu,
_Tp >::__type cyl_bessel_i (_Tpnu __nu, _Tp __x)
5.2.1.8 Regular modified cylindrical Bessel functions. float
cyl_bessel_if (float __nu, float __x)
long double cyl_bessel_il (long double __nu, long double __x)
template<typename _Tpnu, typename _Tp> __gnu_cxx::__promote_2< _Tpnu,
_Tp >::__type cyl_bessel_j (_Tpnu __nu, _Tp __x)
5.2.1.9 Cylindrical Bessel functions (of the first kind). float
cyl_bessel_jf (float __nu, float __x)
long double cyl_bessel_jl (long double __nu, long double __x)
template<typename _Tpnu, typename _Tp> __gnu_cxx::__promote_2< _Tpnu,
_Tp >::__type cyl_bessel_k (_Tpnu __nu, _Tp __x)
5.2.1.10 Irregular modified cylindrical Bessel functions. float
cyl_bessel_kf (float __nu, float __x)
long double cyl_bessel_kl (long double __nu, long double __x)
template<typename _Tpnu, typename _Tp> __gnu_cxx::__promote_2< _Tpnu,
_Tp >::__type cyl_neumann (_Tpnu __nu, _Tp __x)
5.2.1.11 Cylindrical Neumann functions. float cyl_neumannf (float __nu,
float __x)
long double cyl_neumannl (long double __nu, long double __x)
template<typename _Tp, typename _Tpp> __gnu_cxx::__promote_2< _Tp,
_Tpp >::__type ellint_1 (_Tp __k, _Tpp __phi)
5.2.1.12 Incomplete elliptic integrals of the first kind. float
ellint_1f (float __k, float __phi)
long double ellint_1l (long double __k, long double __phi)
template<typename _Tp, typename _Tpp> __gnu_cxx::__promote_2< _Tp,
_Tpp >::__type ellint_2 (_Tp __k, _Tpp __phi)
5.2.1.13 Incomplete elliptic integrals of the second kind. float
ellint_2f (float __k, float __phi)
long double ellint_2l (long double __k, long double __phi)
template<typename _Tp, typename _Tpn, typename _Tpp>
__gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type ellint_3 (_Tp
__k, _Tpn __nu, _Tpp __phi)
5.2.1.14 Incomplete elliptic integrals of the third kind. float
ellint_3f (float __k, float __nu, float __phi)
long double ellint_3l (long double __k, long double __nu, long double
__phi)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
expint (_Tp __x)
5.2.1.15 Exponential integrals. float expintf (float __x)
long double expintl (long double __x)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
fabs (_Tp __x)
template<typename _Tp> std::complex< _Tp > fabs
(const std::complex< _Tp > &__z)
fabs(__z) [8.1.8]. float fabs (float __x)
long double fabs (long double __x)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
hermite (unsigned int __n, _Tp __x)
5.2.1.16 Hermite polynomials. float hermitef (unsigned int __n, float
__x)
long double hermitel (unsigned int __n, long double __x)
template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
__gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type hyperg
(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
float hypergf (float __a, float __b, float __c, float __x)
long double hypergl (long double __a, long double __b, long double __c,
long double __x)
template<typename _Tp> constexpr _Tp imag (const
complex< _Tp > &__z)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
laguerre (unsigned int __n, _Tp __x)
5.2.1.18 Laguerre polynomials. float laguerref (unsigned int __n, float
__x)
long double laguerrel (unsigned int __n, long double __x)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
legendre (unsigned int __n, _Tp __x)
5.2.1.19 Legendre polynomials. float legendref (unsigned int __n, float
__x)
long double legendrel (unsigned int __n, long double __x)
template<typename _Tp> _Tp constexpr norm (const
complex< _Tp > &)
Return z magnitude squared. template<typename _Tp>
complex< _Tp > polar (const _Tp &, const _Tp
&=0)
Return complex with magnitude rho and angle theta.
template<typename _Tp, typename _Up> std::complex< typename
__gnu_cxx::__promote_2< _Tp, _Up >::__type > polar (const
_Tp &__rho, const _Up &__theta)
template<typename _Tp, typename _Up> __gnu_cxx::__promote_2< _Tp, _Up
>::__type pow (_Tp __x, _Up __y)
template<typename _Tp> std::complex< _Tp > pow
(const _Tp &__x, const std::complex< _Tp > &__y)
template<typename _Tp, typename _Up> std::complex< typename
__gnu_cxx::__promote_2< _Tp, _Up >::__type > pow (const _Tp
&__x, const std::complex< _Up > &__y)
template<typename _Tp> std::complex< _Tp > pow
(const std::complex< _Tp > &__x, const _Tp &__y)
template<typename _Tp, typename _Up> std::complex< typename
__gnu_cxx::__promote_2< _Tp, _Up >::__type > pow (const
std::complex< _Tp > &__x, const _Up &__y)
Additional overloads [8.1.9]. template<typename _Tp>
std::complex< _Tp > pow (const std::complex<
_Tp > &__x, const std::complex< _Tp > &__y)
template<typename _Tp, typename _Up> std::complex< typename
__gnu_cxx::__promote_2< _Tp, _Up >::__type > pow (const
std::complex< _Tp > &__x, const std::complex< _Up
> &__y)
float pow (float __x, float __y)
long double pow (long double __x, long double __y)
template<typename _Tp> constexpr _Tp real (const
complex< _Tp > &__z)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
riemann_zeta (_Tp __x)
5.2.1.20 Riemann zeta function. float riemann_zetaf (float __x)
long double riemann_zetal (long double __x)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
sph_bessel (unsigned int __n, _Tp __x)
5.2.1.21 Spherical Bessel functions. float sph_besself (unsigned int
__n, float __x)
long double sph_bessell (unsigned int __n, long double __x)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
sph_legendre (unsigned int __l, unsigned int __m, _Tp __theta)
5.2.1.22 Spherical associated Legendre functions. float sph_legendref
(unsigned int __l, unsigned int __m, float __theta)
long double sph_legendrel (unsigned int __l, unsigned int __m, long
double __theta)
template<typename _Tp> __gnu_cxx::__promote< _Tp >::__type
sph_neumann (unsigned int __n, _Tp __x)
5.2.1.23 Spherical Neumann functions. float sph_neumannf (unsigned int
__n, float __x)
long double sph_neumannl (unsigned int __n, long double __x)
Detailed Description¶
ISO C++ TR1 entities toplevel namespace is std::tr1.
Function Documentation¶
template<typename _Tp> _Tp std::arg (const complex< _Tp > & __z) [inline]¶
Return phase angle of z.
template<typename _Tpa, typename _Tpc, typename _Tp> __gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type __gnu_cxx::conf_hyperg (_Tpa __a, _Tpc __c, _Tp __x) [inline]¶
Return the confluent hypergeometric function $ {}_1F_1(a;c;x) $ of real numeratorial parameter a, denominatorial parameter c, and argument x.
The confluent hypergeometric function is defined by {}_1F_1(a;c;x) = m_{n=0}^{infty} ac{(a)_n x^n}{(c)_n n!} ] where the Pochhammer symbol is $ (x)_k = (x)(x+1)...(x+k-1) $, $ (x)_0 = 1 $
Parameters
__c The denominatorial parameter
__x The argument
float __gnu_cxx::conf_hypergf (float __a, float __c, float __x) [inline]¶
Return the confluent hypergeometric function $ {}_1F_1(a;c;x) $ of float numeratorial parameter a, denominatorial parameter c, and argument x.
See also
long double __gnu_cxx::conf_hypergl (long double __a, long double __c, long double __x) [inline]¶
Return the confluent hypergeometric function $ {}_1F_1(a;c;x) $ of long double numeratorial parameter a, denominatorial parameter c, and argument x.
See also
template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp> __gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type __gnu_cxx::hyperg (_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) [inline]¶
Return the hypergeometric function $ {}_2F_1(a,b;c;x) $ of real numeratorial parameters a and b, denominatorial parameter c, and argument x.
The hypergeometric function is defined by {}_2F_1(a;c;x) = m_{n=0}^{infty} ac{(a)_n (b)_n x^n}{(c)_n n!} ] where the Pochhammer symbol is $ (x)_k = (x)(x+1)...(x+k-1) $, $ (x)_0 = 1 $
Parameters
__b The second numeratorial parameter
__c The denominatorial parameter
__x The argument
float __gnu_cxx::hypergf (float __a, float __b, float __c, float __x) [inline]¶
Return the hypergeometric function $ {}_2F_1(a,b;c;x) $ of @ float numeratorial parameters a and b, denominatorial parameter c, and argument x.
See also
long double __gnu_cxx::hypergl (long double __a, long double __b, long double __c, long double __x) [inline]¶
Return the hypergeometric function $ {}_2F_1(a,b;c;x) $ of long double numeratorial parameters a and b, denominatorial parameter c, and argument x.
See also
template<typename _Tp> _Tp constexpr std::norm (const complex< _Tp > & ) [constexpr]¶
Return z magnitude squared.
template<typename _Tp> complex< _Tp > std::polar (const _Tp & __rho, const _Tp & __theta = 0) [inline]¶
Return complex with magnitude rho and angle theta.
Author¶
Generated automatically by Doxygen for libstdc++ from the source code.
| libstdc++ |