table of contents
OTBCLI_TRAINREGRESSION(1) | User Commands | OTBCLI_TRAINREGRESSION(1) |
NAME¶
otbcli_TrainRegression - OTB TrainRegression application
DESCRIPTION¶
This is the TrainRegression application, version 5.2.0 Train a classifier from multiple images to perform regression.
Complete documentation: http://www.orfeo-toolbox.org/Applications/TrainRegression.html
Parameters:¶
- -progress
- <boolean> Report progress
-io.il <string list> Input Image List (mandatory)
- -io.csv
- <string> Input CSV file (optional, off by default)
- -io.imstat
- <string> Input XML image statistics file (optional, off by default)
-io.out <string> Output regression model (mandatory)
- -sample.mt
- <int32> Maximum training predictors (mandatory, default value is 1000)
- -sample.mv
- <int32> Maximum validation predictors (mandatory, default value is 1000)
- -sample.vtr
- <float> Training and validation sample ratio (mandatory, default value is 0.5)
- -classifier
- <string> Classifier to use for the training [dt/gbt/ann/rf/knn] (mandatory, default value is dt)
- -classifier.dt.max
- <int32> Maximum depth of the tree (mandatory, default value is 65535)
- -classifier.dt.min
- <int32> Minimum number of samples in each node (mandatory, default value is 10)
- -classifier.dt.ra
- <float> Termination criteria for regression tree (mandatory, default value is 0.01)
- -classifier.dt.cat
- <int32> Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split (mandatory, default value is 10)
- -classifier.dt.f
- <int32> K-fold cross-validations (mandatory, default value is 10)
- -classifier.dt.r
- <boolean> Set Use1seRule flag to false (optional, off by default)
- -classifier.dt.t
- <boolean> Set TruncatePrunedTree flag to false (optional, off by default)
- -classifier.gbt.t
- <string> Loss Function Type [sqr/abs/hub] (mandatory, default value is sqr)
- -classifier.gbt.w
- <int32> Number of boosting algorithm iterations (mandatory, default value is 200)
- -classifier.gbt.s
- <float> Regularization parameter (mandatory, default value is 0.01)
- -classifier.gbt.p
- <float> Portion of the whole training set used for each algorithm iteration (mandatory, default value is 0.8)
- -classifier.gbt.max
- <int32> Maximum depth of the tree (mandatory, default value is 3)
- -classifier.ann.t
- <string> Train Method Type [reg/back] (mandatory, default value is reg)
- -classifier.ann.sizes
- <string list> Number of neurons in each intermediate layer (mandatory)
- -classifier.ann.f
- <string> Neuron activation function type [ident/sig/gau] (mandatory, default value is sig)
- -classifier.ann.a
- <float> Alpha parameter of the activation function (mandatory, default value is 1)
- -classifier.ann.b
- <float> Beta parameter of the activation function (mandatory, default value is 1)
- -classifier.ann.bpdw
- <float> Strength of the weight gradient term in the BACKPROP method (mandatory, default value is 0.1)
- -classifier.ann.bpms
- <float> Strength of the momentum term (the difference between weights on the 2 previous iterations) (mandatory, default value is 0.1)
- -classifier.ann.rdw
- <float> Initial value Delta_0 of update-values Delta_{ij} in RPROP method (mandatory, default value is 0.1)
- -classifier.ann.rdwm
- <float> Update-values lower limit Delta_{min} in RPROP method (mandatory, default value is 1e-07)
- -classifier.ann.term
- <string> Termination criteria [iter/eps/all] (mandatory, default value is all)
- -classifier.ann.eps
- <float> Epsilon value used in the Termination criteria (mandatory, default value is 0.01)
- -classifier.ann.iter
- <int32> Maximum number of iterations used in the Termination criteria (mandatory, default value is 1000)
- -classifier.rf.max
- <int32> Maximum depth of the tree (mandatory, default value is 5)
- -classifier.rf.min
- <int32> Minimum number of samples in each node (mandatory, default value is 10)
- -classifier.rf.ra
- <float> Termination Criteria for regression tree (mandatory, default value is 0)
- -classifier.rf.cat
- <int32> Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split (mandatory, default value is 10)
- -classifier.rf.var
- <int32> Size of the randomly selected subset of features at each tree node (mandatory, default value is 0)
- -classifier.rf.nbtrees <int32>
- Maximum number of trees in the forest (mandatory, default value is 100)
- -classifier.rf.acc
- <float> Sufficient accuracy (OOB error) (mandatory, default value is 0.01)
- -classifier.knn.k
- <int32> Number of Neighbors (mandatory, default value is 32)
- -classifier.knn.rule
- <string> Decision rule [mean/median] (mandatory, default value is mean)
- -rand
- <int32> set user defined seed (optional, off by default)
- -inxml
- <string> Load otb application from xml file (optional, off by default)
EXAMPLES¶
otbcli_TrainRegression -io.il training_dataset.tif -io.out regression_model.txt -io.imstat training_statistics.xml -classifier libsvm
SEE ALSO¶
The full documentation for otbcli_TrainRegression is maintained as a Texinfo manual. If the info and otbcli_TrainRegression programs are properly installed at your site, the command
- info otbcli_TrainRegression
should give you access to the complete manual.
December 2015 | otbcli_TrainRegression 5.2.0 |