table of contents
| OTBCLI_BANDMATH(1) | User Commands | OTBCLI_BANDMATH(1) | 
NAME¶
otbcli_TrainVectorClassifier - OTB TrainVectorClassifier application
DESCRIPTION¶
This is the TrainVectorClassifier application, version 5.6.0 Train a classifier based on labeled geometries and a list of features to consider.
Complete documentation: http://www.orfeo-toolbox.org/Applications/TrainVectorClassifier.html
Parameters:¶
- -progress <boolean>
- Report progress
  
   -io.stats <string> Input XML image statistics file (optional,
    off by default)
  
   -io.confmatout <string> Output confusion matrix (optional, off
    by default)
  
   -io.out <string> Output model (mandatory)
  
   -feat <string list> Field names for training features.
    (mandatory, default value is )
  
   -cfield <string> Field containing the class id for supervision
    (mandatory, default value is class)
  
   -layer <int32> Layer Index (optional, on by default, default
    value is 0)
  
   -valid.vd <string> Validation Vector Data (optional, off by
    default)
  
   -valid.layer <int32> Layer Index (optional, on by default,
    default value is 0)
  
   -classifier <string> Classifier to use for the training
    [boost/dt/gbt/ann/bayes/rf/knn] (mandatory, default value is boost)
  
   -classifier.boost.t <string> Boost Type
    [discrete/real/logit/gentle] (mandatory, default value is real)
  
   -classifier.boost.w <int32> Weak count (mandatory, default value
    is 100)
  
   -classifier.boost.r <float> Weight Trim Rate (mandatory, default
    value is 0.95)
  
   -classifier.boost.m <int32> Maximum depth of the tree
    (mandatory, default value is 1)
  
   -classifier.dt.max <int32> Maximum depth of the tree (mandatory,
    default value is 65535)
  
   -classifier.dt.min <int32> Minimum number of samples in each
    node (mandatory, default value is 10)
  
   -classifier.dt.ra <float> Termination criteria for regression
    tree (mandatory, default value is 0.01)
  
   -classifier.dt.cat <int32> Cluster possible values of a
    categorical variable into K <= cat clusters to find a suboptimal split
    (mandatory, default value is 10)
  
   -classifier.dt.f <int32> K-fold cross-validations
    (mandatory, default value is 10)
  
   -classifier.dt.r <boolean> Set Use1seRule flag to false
    (optional, off by default)
  
   -classifier.dt.t <boolean> Set TruncatePrunedTree flag to false
    (optional, off by default)
  
   -classifier.gbt.w <int32> Number of boosting algorithm
    iterations (mandatory, default value is 200)
  
   -classifier.gbt.s <float> Regularization parameter (mandatory,
    default value is 0.01)
  
   -classifier.gbt.p <float> Portion of the whole training set used
    for each algorithm iteration (mandatory, default value is 0.8)
  
   -classifier.gbt.max <int32> Maximum depth of the tree
    (mandatory, default value is 3)
  
   -classifier.ann.t <string> Train Method Type [reg/back]
    (mandatory, default value is reg)
  
   -classifier.ann.sizes <string list> Number of neurons in each
    intermediate layer (mandatory)
  
   -classifier.ann.f <string> Neuron activation function type
    [ident/sig/gau] (mandatory, default value is sig)
  
   -classifier.ann.a <float> Alpha parameter of the activation
    function (mandatory, default value is 1)
  
   -classifier.ann.b <float> Beta parameter of the activation
    function (mandatory, default value is 1)
  
   -classifier.ann.bpdw <float> Strength of the weight gradient
    term in the BACKPROP method (mandatory, default value is 0.1)
  
   -classifier.ann.bpms <float> Strength of the momentum term (the
    difference between weights on the 2 previous iterations) (mandatory, default
    value is 0.1)
  
   -classifier.ann.rdw <float> Initial value Delta_0 of
    update-values Delta_{ij} in RPROP method (mandatory, default value is
    0.1)
  
   -classifier.ann.rdwm <float> Update-values lower limit
    Delta_{min} in RPROP method (mandatory, default value is 1e-07)
  
   -classifier.ann.term <string> Termination criteria
    [iter/eps/all] (mandatory, default value is all)
  
   -classifier.ann.eps <float> Epsilon value used in the
    Termination criteria (mandatory, default value is 0.01)
  
   -classifier.ann.iter <int32> Maximum number of iterations used
    in the Termination criteria (mandatory, default value is 1000)
  
   -classifier.rf.max <int32> Maximum depth of the tree (mandatory,
    default value is 5)
  
   -classifier.rf.min <int32> Minimum number of samples in each
    node (mandatory, default value is 10)
  
   -classifier.rf.ra <float> Termination Criteria for regression
    tree (mandatory, default value is 0)
  
   -classifier.rf.cat <int32> Cluster possible values of a
    categorical variable into K <= cat clusters to find a suboptimal split
    (mandatory, default value is 10)
  
   -classifier.rf.var <int32> Size of the randomly selected subset
    of features at each tree node (mandatory, default value is 0)
  
   -classifier.rf.nbtrees <int32> Maximum number of trees in the
    forest (mandatory, default value is 100)
  
   -classifier.rf.acc <float> Sufficient accuracy (OOB error)
    (mandatory, default value is 0.01)
  
   -classifier.knn.k <int32> Number of Neighbors (mandatory,
    default value is 32)
  
   -rand <int32> set user defined seed (optional, off by default)
  
   -inxml <string> Load otb application from xml file (optional,
    off by default)
EXAMPLES¶
otbcli_TrainVectorClassifier -io.vd vectorData.shp -io.stats meanVar.xml -io.out svmModel.svm -feat perimeter area width -cfield predicted
| December 2015 | otbcli_TrainVectorClassifier 5.6.0 |