PSDTTRF(l) | LAPACK routine (version 1.5) | PSDTTRF(l) |
NAME¶
PSDTTRF - compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
SYNOPSIS¶
- SUBROUTINE PSDTTRF(
- N, DL, D, DU, JA, DESCA, AF, LAF, WORK, LWORK, INFO )
INTEGER INFO, JA, LAF, LWORK, N INTEGER DESCA( * ) REAL AF( * ), D( * ), DL( * ), DU( * ), WORK( * )
PURPOSE¶
PSDTTRF computes a LU factorization of an N-by-N real tridiagonal
diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1). Reordering is
used to increase parallelism in the factorization. This reordering results
in factors that are DIFFERENT from those produced by equivalent sequential
codes. These factors cannot be used directly by users; however, they can be
used in
subsequent calls to PSDTTRS to solve linear systems.
The factorization has the form
P A(1:N, JA:JA+N-1) P^T = L U
where U is a tridiagonal upper triangular matrix and L is tridiagonal lower triangular, and P is a permutation matrix.
12 May 1997 | LAPACK version 1.5 |