table of contents
vec(4rheolef) | rheolef | vec(4rheolef) |
NAME¶
vec - distributed vector (rheolef-7.2)
DESCRIPTION¶
This vector class supports both the sequential and the distributed memory model. In addition, standard linear algebra is supported.
EXAMPLE¶
vec<double> x (100, 3.14);
vec<double> y (100, 6.28);
vec<double> z = 2.5*x + y;
dout << x << endl;
IMPLEMENTATION¶
This documentation has been generated from file linalg/lib/vec.h
The vec class is a template class with both the floating type and the memory model as parameters. The implementation bases on the disarray(4) container.
template <class T, class M = rheo_default_memory_model> class vec : public disarray<T, M> { public: // typedef:
typedef disarray<T, M> base;
typedef T value_type;
typedef typename base::size_type size_type;
typedef std::ptrdiff_t difference_type;
typedef range range_type;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef typename float_traits <value_type>::type float_type; // allocator/deallocator:
vec (const vec<T,M>&);
vec<T,M>& operator= (const vec<T,M>& x);
vec (const distributor& ownership,
const T& init_val = std::numeric_limits<T>::max());
vec (const std::initializer_list<details::vec_concat_value<T,M> >& init_list);
vec<T,M>& operator= (const std::initializer_list<details::vec_concat_value<T,M> >& init_list);
vec(size_type dis_size = 0,
const T& init_val = std::numeric_limits<T>::max());
void resize (
const distributor& ownership,
const T& init_val = std::numeric_limits<T>::max());
void resize (
size_type size = 0,
const T& init_val = std::numeric_limits<T>::max()); // accessors:
const_reference operator[] (size_type i) const;
reference operator[] (size_type i);
T min () const;
T max () const;
T max_abs () const;
int constraint_process_rank() const; // range:
vec(const vec_range<T,M>& vr);
vec(const vec_range_const<T,M>& vr);
vec<T,M>& operator= (const vec_range<T,M>& vr);
vec<T,M>& operator= (const vec_range_const<T,M>& vr);
vec_range_const<T,M> operator[] (const range_type& r) const;
vec_range<T,M> operator[] (const range_type& r); // assignment to a constant:
vec<T,M>& operator= (const int& expr);
vec<T,M>& operator= (const T& expr); // expression template:
template <class Expr,
class Sfinae
= typename std::enable_if<
details::is_vec_expr_v2_arg<Expr>::value
&& ! details::is_vec<Expr>::value
>::type>
vec (const Expr& expr);
template <class Expr,
class Sfinae
= typename std::enable_if<
details::is_vec_expr_v2_arg<Expr>::value
&& ! details::is_vec<Expr>::value
>::type>
vec<T, M>& operator= (const Expr& expr); };
AUTHOR¶
Pierre Saramito <Pierre.Saramito@imag.fr>
COPYRIGHT¶
Copyright (C) 2000-2018 Pierre Saramito <Pierre.Saramito@imag.fr> GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.
Mon Sep 19 2022 | Version 7.2 |