Scroll to navigation

CATANH(3) Linux Programmer's Manual CATANH(3)

名前

catanh, catanhf, catanhl - 複素数の逆双曲線正接 (arc tangents hyperbolic)

書式

#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

-lm でリンクする。

説明

catanh() 関数は複素数 z の逆双曲線正弦 (arc hyperbolic tangent) を計算する。 y = catanh(z) ならば、 z = ctanh(y) が成立する。 y の虚部の値は区間 [-pi/2,pi/2] から選択される。

次の関係が成立する:


catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))

バージョン

これらの関数は glibc バージョン 2.1 で初めて登場した。

準拠

C99.

/* "-lm" でリンクする */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{

double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS); }

関連項目

atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)

この文書について

この man ページは Linux man-pages プロジェクトのリリース 3.79 の一部 である。プロジェクトの説明とバグ報告に関する情報は http://www.kernel.org/doc/man-pages/ に書かれている。

2011-09-15