table of contents
mlpack_softmax_regression(1) | User Commands | mlpack_softmax_regression(1) |
NAME¶
mlpack_softmax_regression - softmax regression
SYNOPSIS¶
mlpack_softmax_regression [-m unknown] [-l string] [-r double] [-n int] [-N bool] [-c int] [-T string] [-L string] [-t string] [-V bool] [-M unknown] [-p string] [-h -v]
DESCRIPTION¶
This program performs softmax regression, a generalization of logistic regression to the multiclass case, and has support for L2 regularization. The program is able to train a model, load an existing model, and give predictions (and optionally their accuracy) for test data.
Training a softmax regression model is done by giving a file of training points with the '--training_file (-t)' parameter and their corresponding labels with the '--labels_file (-l)' parameter. The number of classes can be manually specified with the '--number_of_classes (-c)' parameter, and the maximum number of iterations of the L-BFGS optimizer can be specified with the ’--max_iterations (-n)' parameter. The L2 regularization constant can be specified with the '--lambda (-r)' parameter and if an intercept term is not desired in the model, the '--no_intercept (-N)' parameter can be specified.
The trained model can be saved with the '--output_model_file (-M)' output parameter. If training is not desired, but only testing is, a model can be loaded with the '--input_model_file (-m)' parameter. At the current time, a loaded model cannot be trained further, so specifying both '--input_model_file (-m)' and '--training_file (-t)' is not allowed.
The program is also able to evaluate a model on test data. A test dataset can be specified with the '--test_file (-T)' parameter. Class predictions can be saved with the '--predictions_file (-p)' output parameter. If labels are specified for the test data with the '--test_labels_file (-L)' parameter, then the program will print the accuracy of the predictions on the given test set and its corresponding labels.
For example, to train a softmax regression model on the data
'dataset.csv' with labels 'labels.csv' with a maximum of 1000 iterations for
training, saving the trained model to 'sr_model.bin', the following command
can be used:
Then, to use 'sr_model.bin' to classify the test points in 'test_points.csv', saving the output predictions to 'predictions.csv', the following command can be used:
$ mlpack_softmax_regression --input_model_file sr_model.bin --test_file test_points.csv --predictions_file predictions.csv
OPTIONAL INPUT OPTIONS¶
- --help (-h) [bool]
- Default help info.
- --info [string]
- Print help on a specific option. Default value ''.
- --input_model_file (-m) [unknown]
- File containing existing model (parameters).
- --labels_file (-l) [string]
- A matrix containing labels (0 or 1) for the points in the training set (y). The labels must order as a row.
- --lambda (-r) [double]
- L2-regularization constant Default value 0.0001.
- --max_iterations (-n) [int]
- Maximum number of iterations before termination. Default value 400.
- --no_intercept (-N) [bool]
- Do not add the intercept term to the model.
- --number_of_classes (-c) [int]
- Number of classes for classification; if unspecified (or 0), the number of classes found in the labels will be used. Default value 0.
- --test_file (-T) [string]
- Matrix containing test dataset.
- --test_labels_file (-L) [string]
- Matrix containing test labels.
- --training_file (-t) [string]
- A matrix containing the training set (the matrix of predictors, X).
- --verbose (-v) [bool]
- Display informational messages and the full list of parameters and timers at the end of execution.
- --version (-V) [bool]
- Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS¶
- --output_model_file (-M) [unknown]
- File to save trained softmax regression model to.
- --predictions_file (-p) [string]
- Matrix to save predictions for test dataset into.
ADDITIONAL INFORMATION¶
For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.
12 December 2020 | mlpack-3.4.2 |