## table of contents

realPTsolve(3) | LAPACK | realPTsolve(3) |

# NAME¶

realPTsolve# SYNOPSIS¶

## Functions¶

subroutine

**sptsv**(N, NRHS, D, E, B, LDB, INFO)

**SPTSV computes the solution to system of linear equations A * X = B for PT matrices**subroutine

**sptsvx**(FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, INFO)

**SPTSVX computes the solution to system of linear equations A * X = B for PT matrices**

# Detailed Description¶

This is the group of real solve driver functions for PT matrices# Function Documentation¶

## subroutine sptsv (integer N, integer NRHS, real, dimension( * ) D, real, dimension( * ) E, real, dimension( ldb, * ) B, integer LDB, integer INFO)¶

**SPTSV computes the solution to system of linear equations A * X = B for PT matrices**

**Purpose: **

SPTSV computes the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix, and X and B are N-by-NRHS matrices. A is factored as A = L*D*L**T, and the factored form of A is then used to solve the system of equations.

**Parameters:**

*N*

N is INTEGER The order of the matrix A. N >= 0.

*NRHS*

NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.

*D*

D is REAL array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix A. On exit, the n diagonal elements of the diagonal matrix D from the factorization A = L*D*L**T.

*E*

E is REAL array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A. On exit, the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**T factorization of A. (E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the U**T*D*U factorization of A.)

*B*

B is REAL array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.

*LDB*

LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*INFO*

INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the leading minor of order i is not positive definite, and the solution has not been computed. The factorization has not been completed unless i = N.

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

December 2016

## subroutine sptsvx (character FACT, integer N, integer NRHS, real, dimension( * ) D, real, dimension( * ) E, real, dimension( * ) DF, real, dimension( * ) EF, real, dimension( ldb, * ) B, integer LDB, real, dimension( ldx, * ) X, integer LDX, real RCOND, real, dimension( * ) FERR, real, dimension( * ) BERR, real, dimension( * ) WORK, integer INFO)¶

**SPTSVX computes the solution to system of linear equations A * X = B for PT matrices**

**Purpose: **

SPTSVX uses the factorization A = L*D*L**T to compute the solution to a real system of linear equations A*X = B, where A is an N-by-N symmetric positive definite tridiagonal matrix and X and B are N-by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided.

**Description: **

The following steps are performed: 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L is a unit lower bidiagonal matrix and D is diagonal. The factorization can also be regarded as having the form A = U**T*D*U. 2. If the leading i-by-i principal minor is not positive definite, then the routine returns with INFO = i. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, INFO = N+1 is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below. 3. The system of equations is solved for X using the factored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

**Parameters:**

*FACT*

FACT is CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, DF and EF contain the factored form of A. D, E, DF, and EF will not be modified. = 'N': The matrix A will be copied to DF and EF and factored.

*N*

N is INTEGER The order of the matrix A. N >= 0.

*NRHS*

NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.

*D*

D is REAL array, dimension (N) The n diagonal elements of the tridiagonal matrix A.

*E*

E is REAL array, dimension (N-1) The (n-1) subdiagonal elements of the tridiagonal matrix A.

*DF*

DF is REAL array, dimension (N) If FACT = 'F', then DF is an input argument and on entry contains the n diagonal elements of the diagonal matrix D from the L*D*L**T factorization of A. If FACT = 'N', then DF is an output argument and on exit contains the n diagonal elements of the diagonal matrix D from the L*D*L**T factorization of A.

*EF*

EF is REAL array, dimension (N-1) If FACT = 'F', then EF is an input argument and on entry contains the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**T factorization of A. If FACT = 'N', then EF is an output argument and on exit contains the (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L**T factorization of A.

*B*

B is REAL array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B.

*LDB*

LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*X*

X is REAL array, dimension (LDX,NRHS) If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.

*LDX*

LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).

*RCOND*

RCOND is REAL The reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0.

*FERR*

FERR is REAL array, dimension (NRHS) The forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j).

*BERR*

BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).

*WORK*

WORK is REAL array, dimension (2*N)

*INFO*

INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: the leading minor of order i of A is not positive definite, so the factorization could not be completed, and the solution has not been computed. RCOND = 0 is returned. = N+1: U is nonsingular, but RCOND is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of RCOND would suggest.

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

December 2016

# Author¶

Generated automatically by Doxygen for LAPACK from the source code.Tue Dec 4 2018 | Version 3.8.0 |