mia-2dmyoica-nonrigid-parallel(1) | General Commands Manual | mia-2dmyoica-nonrigid-parallel(1) |
NAME¶
mia-2dmyoica-nonrigid-parallel - Run a registration of a series of 2D images.
SYNOPSIS¶
mia-2dmyoica-nonrigid-parallel -i <in-file> -o <out-file> [options]
DESCRIPTION¶
mia-2dmyoica-nonrigid-parallel This program implements the 2D version of the motion compensation algorithm described in
This version of the program runs all registrations in parallel.
OPTIONS¶
File-IO¶
- -i --in-file=(required, input); string
- input perfusion data set
- -o --out-file=(required, output); string
- output perfusion data set
- -r --registered=reg
- File name base for the registered images. Image type and numbering scheme are taken from the input images as given in the input data set.
- --save-cropped=(output); string
- save cropped set to this file, the image files will use the stem of the name as file name base
- --save-feature=(output); string
- save segmentation feature images and initial ICA mixing matrix
- --save-refs=(output); string
- for each registration pass save the reference images to files with the given name base
- --save-regs=(output); string
- for each registration pass save intermediate registered images
Help & Info¶
- -V --verbose=warning
- verbosity of output, print messages of given level and higher priorities. Supported priorities starting at lowest level are:
- --copyright
- print copyright information
- -h --help
- print this help
- -? --usage
- print a short help
- --version
- print the version number and exit
ICA¶
- --fastica=internal
- FastICA implementationto be used
For supported plugins see PLUGINS:fastica/implementation - -C --components=0
- ICA components 0 = automatic estimation
- --normalize
- normalized ICs
- --no-meanstrip
- don't strip the mean from the mixing curves
- -s --segscale=0
- segment and scale the crop box around the LV (0=no segmentation)
- -k --skip=0
- skip images at the beginning of the series e.g. because as they are of other modalities
- -m --max-ica-iter=400
- maximum number of iterations in ICA
- -E --segmethod=features
- Segmentation method
- -b --min-breathing-frequency=-1
- minimal mean frequency a mixing curve can have to be considered to stem from brething. A healthy rest breating rate is 12 per minute. A negative value disables the test.
Processing¶
- --threads=-1
- Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation).
Registration¶
- -O --optimizer=gsl:opt=gd,step=0.1
- Optimizer used for minimization. The string value will be used to
construct a plug-in.
For supported plugins see PLUGINS:minimizer/singlecost - -a --start-c-rate=16
- start coefficinet rate in spines, gets divided by --c-rate-divider with every pass.
- --c-rate-divider=2
- Cofficient rate divider for each pass.
- -d --start-divcurl=10000
- Start divcurl weight, gets divided by --divcurl-divider with every pass.
- --divcurl-divider=2
- Divcurl weight scaling with each new pass.
- -w --imagecost=image:weight=1,cost=ssd
- image cost, do not specify the src and ref parameters, these will be set
by the program. The string value will be used to construct a plug-in.
For supported plugins see PLUGINS:2dimage/fullcost - -l --mg-levels=3
- multi-resolution levels
- -P --passes=3
- registration passes
PLUGINS: 1d/splinekernel¶
- bspline
- B-spline kernel creation , supported parameters are:
- omoms
- OMoms-spline kernel creation, supported parameters are:
PLUGINS: 2dimage/cost¶
- lncc
- local normalized cross correlation with masking support., supported parameters are:
- lsd
- Least-Squares Distance measure
- mi
- Spline parzen based mutual information., supported parameters are:
- ncc
- normalized cross correlation.
- ngf
- This function evaluates the image similarity based on normalized gradient fields. Various evaluation kernels are available., supported parameters are:
- ssd
- 2D imaga cost: sum of squared differences, supported parameters are:
- ssd-automask
- 2D image cost: sum of squared differences, with automasking based on given thresholds, supported parameters are:
PLUGINS: 2dimage/fullcost¶
- image
- Generalized image similarity cost function that also handles multi-resolution processing. The actual similarity measure is given es extra parameter., supported parameters are:
- labelimage
- Similarity cost function that maps labels of two images and handles label-preserving multi-resolution processing., supported parameters are:
- maskedimage
- Generalized masked image similarity cost function that also handles multi-resolution processing. The provided masks should be densly filled regions in multi-resolution procesing because otherwise the mask information may get lost when downscaling the image. The reference mask and the transformed mask of the study image are combined by binary AND. The actual similarity measure is given es extra parameter., supported parameters are:
PLUGINS: 2dimage/io¶
- bmp
- BMP 2D-image input/output support. The plug-in supports reading and writing of binary images and 8-bit gray scale images. read-only support is provided for 4-bit gray scale images. The color table is ignored and the pixel values are taken as literal gray scale values.
- datapool
- Virtual IO to and from the internal data pool
- dicom
- 2D image io for DICOM
- exr
- a 2dimage io plugin for OpenEXR images
- jpg
- a 2dimage io plugin for jpeg gray scale images
- png
- a 2dimage io plugin for png images
- raw
- RAW 2D-image output support
- tif
- TIFF 2D-image input/output support
- vista
- a 2dimage io plugin for vista images
PLUGINS: 2dimage/maskedcost¶
- lncc
- local normalized cross correlation with masking support., supported parameters are:
- mi
- Spline parzen based mutual information with masking., supported parameters are:
- ncc
- normalized cross correlation with masking support.
- ssd
- Sum of squared differences with masking.
PLUGINS: fastica/implementation¶
- internal
- This is the MIA implementation of the FastICA algorithm.
- itpp
- This is the IT++ implementation of the FastICA algorithm.
PLUGINS: minimizer/singlecost¶
- gdas
- Gradient descent with automatic step size correction., supported parameters are:
- gdsq
- Gradient descent with quadratic step estimation, supported parameters are:
- gsl
- optimizer plugin based on the multimin optimizers of the GNU Scientific Library (GSL) https://www.gnu.org/software/gsl/, supported parameters are:
- nlopt
- Minimizer algorithms using the NLOPT library, for a description of the optimizers please see 'http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms', supported parameters are:
EXAMPLE¶
Register the perfusion series given in 'segment.set' by using automatic ICA estimation. Skip two images at the beginning and otherwiese use the default parameters. Store the result in 'registered.set'.
mia-2dmyoica-nonrigid-parallel -i segment.set -o registered.set -k 2
AUTHOR(s)¶
Gert Wollny
COPYRIGHT¶
This software is Copyright (c) 1999‐2015 Leipzig, Germany and Madrid, Spain. It comes with ABSOLUTELY NO WARRANTY and you may redistribute it under the terms of the GNU GENERAL PUBLIC LICENSE Version 3 (or later). For more information run the program with the option '--copyright'.
v2.4.7 | USER COMMANDS |