table of contents
other versions
- jessie 3.5.0-4
 - jessie-backports 3.7.0-1~bpo8+1
 - stretch 3.7.0-2
 - testing 3.8.0-1
 - unstable 3.8.0-1
 
| dlaed5.f(3) | LAPACK | dlaed5.f(3) | 
NAME¶
dlaed5.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine dlaed5 (I, D, Z, DELTA, RHO, DLAM)
Function/Subroutine Documentation¶
subroutine dlaed5 (integerI, double precision, dimension( 2 )D, double precision, dimension( 2 )Z, double precision, dimension( 2 )DELTA, double precisionRHO, double precisionDLAM)¶
DLAED5 used by sstedc. Solves the 2-by-2 secular equation. Purpose: This subroutine computes the I-th eigenvalue of a symmetric rank-one
 modification of a 2-by-2 diagonal matrix
            diag( D )  +  RHO * Z * transpose(Z) .
 The diagonal elements in the array D are assumed to satisfy
            D(i) < D(j)  for  i < j .
 We also assume RHO > 0 and that the Euclidean norm of the vector
 Z is one.
I
Author:
          I is INTEGER
         The index of the eigenvalue to be computed.  I = 1 or I = 2.
D
          D is DOUBLE PRECISION array, dimension (2)
         The original eigenvalues.  We assume D(1) < D(2).
Z
          Z is DOUBLE PRECISION array, dimension (2)
         The components of the updating vector.
DELTA
          DELTA is DOUBLE PRECISION array, dimension (2)
         The vector DELTA contains the information necessary
         to construct the eigenvectors.
RHO
          RHO is DOUBLE PRECISION
         The scalar in the symmetric updating formula.
DLAM
          DLAM is DOUBLE PRECISION
         The computed lambda_I, the I-th updated eigenvalue.
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Contributors: 
Ren-Cang Li, Computer Science Division, University of
  California at Berkeley, USA
Definition at line 109 of file dlaed5.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.| Wed Oct 15 2014 | Version 3.4.2 |