table of contents
other versions
- jessie 3.5.0-4
- jessie-backports 3.7.0-1~bpo8+1
- stretch 3.7.0-2
- testing 3.8.0-1
- unstable 3.8.0-1
| zlags2.f(3) | LAPACK | zlags2.f(3) |
NAME¶
zlags2.f -SYNOPSIS¶
Functions/Subroutines¶
subroutine zlags2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ)
Function/Subroutine Documentation¶
subroutine zlags2 (logicalUPPER, double precisionA1, complex*16A2, double precisionA3, double precisionB1, complex*16B2, double precisionB3, double precisionCSU, complex*16SNU, double precisionCSV, complex*16SNV, double precisionCSQ, complex*16SNQ)¶
ZLAGS2 Purpose: ZLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
that if ( UPPER ) then
U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x )
and
V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 )
( 0 B3 ) ( x x )
or if ( .NOT.UPPER ) then
U**H *A*Q = U**H *( A1 0 )*Q = ( x x )
( A2 A3 ) ( 0 x )
and
V**H *B*Q = V**H *( B1 0 )*Q = ( x x )
( B2 B3 ) ( 0 x )
where
U = ( CSU SNU ), V = ( CSV SNV ),
( -SNU**H CSU ) ( -SNV**H CSV )
Q = ( CSQ SNQ )
( -SNQ**H CSQ )
The rows of the transformed A and B are parallel. Moreover, if the
input 2-by-2 matrix A is not zero, then the transformed (1,1) entry
of A is not zero. If the input matrices A and B are both not zero,
then the transformed (2,2) element of B is not zero, except when the
first rows of input A and B are parallel and the second rows are
zero.
UPPER
Author:
UPPER is LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A1
A1 is DOUBLE PRECISIONA2
A2 is COMPLEX*16A3
A3 is DOUBLE PRECISION
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
B1
B1 is DOUBLE PRECISIONB2
B2 is COMPLEX*16B3
B3 is DOUBLE PRECISION
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
CSU
CSU is DOUBLE PRECISIONSNU
SNU is COMPLEX*16
The desired unitary matrix U.
CSV
CSV is DOUBLE PRECISIONSNV
SNV is COMPLEX*16
The desired unitary matrix V.
CSQ
CSQ is DOUBLE PRECISIONSNQ
SNQ is COMPLEX*16
The desired unitary matrix Q.
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 158 of file zlags2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.| Wed Oct 15 2014 | Version 3.4.2 |