NAME¶
cacos, cacosf, cacosl - complex arc cosine
SYNOPSIS¶
#include <complex.h>
double complex cacos(double complex z);
 
float complex cacosf(float complex z);
 
long double complex cacosl(long double complex z);
Link with 
-lm.
DESCRIPTION¶
The 
cacos() function calculates the complex arc cosine of 
z. If
  
y = cacos(z), then 
z = ccos(y). The
  real part of 
y is chosen in the interval [0,pi].
One has:
    cacos(z) = -i * clog(z + i * csqrt(1 - z * z))
VERSIONS¶
These functions first appeared in glibc in version 2.1.
C99.
EXAMPLE¶
/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
    double complex z, c, f;
    double complex i = I;
    if (argc != 3) {
        fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
        exit(EXIT_FAILURE);
    }
    z = atof(argv[1]) + atof(argv[2]) * I;
    c = cacos(z);
    printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));
    f = -i * clog(z + i * csqrt(1 - z * z));
    printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));
    exit(EXIT_SUCCESS);
}
SEE ALSO¶
ccos(3), 
clog(3), 
complex(7)
COLOPHON¶
This page is part of release 3.74 of the Linux 
man-pages project. A
  description of the project, information about reporting bugs, and the latest
  version of this page, can be found at
  
http://www.kernel.org/doc/man-pages/.