NAME¶
catanh, catanhf, catanhl - complex arc tangents hyperbolic
SYNOPSIS¶
#include <complex.h>
double complex catanh(double complex z);
 
float complex catanhf(float complex z);
 
long double complex catanhl(long double complex z);
Link with 
-lm.
DESCRIPTION¶
The 
catanh() function calculates the complex arc hyperbolic tangent of
  
z. If 
y = catanh(z), then
  
z = ctanh(y). The imaginary part of 
y is chosen in
  the interval [-pi/2,pi/2].
One has:
    catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))
VERSIONS¶
These functions first appeared in glibc in version 2.1.
C99.
EXAMPLE¶
/* Link with "-lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
    double complex z, c, f;
    if (argc != 3) {
        fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
        exit(EXIT_FAILURE);
    }
    z = atof(argv[1]) + atof(argv[2]) * I;
    c = catanh(z);
    printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
    f = 0.5 * (clog(1 + z) - clog(1 - z));
    printf("formula  = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
    exit(EXIT_SUCCESS);
}
SEE ALSO¶
atanh(3), 
cabs(3), 
cimag(3), 
ctanh(3),
  
complex(7)
COLOPHON¶
This page is part of release 3.74 of the Linux 
man-pages project. A
  description of the project, information about reporting bugs, and the latest
  version of this page, can be found at
  
http://www.kernel.org/doc/man-pages/.