table of contents
YASM_ARCH(7) | Yasm Supported Architectures | YASM_ARCH(7) |
NAME¶
yasm_arch - Yasm Supported Target ArchitecturesSYNOPSIS¶
yasm -a arch
[-m machine] ...
DESCRIPTION¶
The standard Yasm distribution includes a number of modules for different target architectures. Each target architecture can support one or more machine architectures. The architecture and machine are selected on the yasm(1) command line by use of the -a arch and -m machine command line options, respectively. The machine architecture may also automatically be selected by certain object formats. For example, the “elf32” object format selects the “x86” machine architecture by default, while the “elf64” object format selects the “amd64” machine architecture by default.X86 ARCHITECTURE¶
The “x86” architecture supports the IA-32 instruction set and derivatives and the AMD64 instruction set. It consists of two machines: “x86” (for the IA-32 and derivatives) and “amd64” (for the AMD64 and derivatives). The default machine for the “x86” architecture is the “x86” machine.BITS Setting¶
The x86 architecture BITS setting specifies to Yasm the processor mode in which the generated code is intended to execute. x86 processors can run in three different major execution modes: 16-bit, 32-bit, and on AMD64-supporting processors, 64-bit. As the x86 instruction set contains portions whose function is execution-mode dependent (such as operand-size and address-size override prefixes), Yasm cannot assemble x86 instructions correctly unless it is told by the user in what processor mode the code will execute. The BITS setting can be changed in a variety of ways. When using the NASM-compatible parser, the BITS setting can be changed directly via the use of the BITS xx assembler directive. The default BITS setting is determined by the object format in use.BITS 64 Extensions¶
The AMD64 architecture is a new 64-bit architecture developed by AMD, based on the 32-bit x86 architecture. It extends the original x86 architecture by doubling the number of general purpose and SIMD registers, extending the arithmetic operations and address space to 64 bits, as well as other features. Recently, Intel has introduced an essentially identical version of AMD64 called EM64T. When an AMD64-supporting processor is executing in 64-bit mode, a number of additional extensions are available, including extra general purpose registers, extra SSE2 registers, and RIP-relative addressing. Yasm extends the base NASM syntax to support AMD64 as follows. To enable assembly of instructions for the 64-bit mode of AMD64 processors, use the directive BITS 64. As with NASM´s BITS directive, this does not change the format of the output object file to 64 bits; it only changes the assembler mode to assume that the instructions being assembled will be run in 64-bit mode. To specify an AMD64 object file, use -m amd64 on the Yasm command line, or explicitly target a 64-bit object format such as -f win64 or -f elf64.
The additional 64-bit general purpose registers are named r8-r15. There are also
8-bit (rXb), 16-bit (rXw), and 32-bit (rXd) subregisters that map to the least
significant 8, 16, or 32 bits of the 64-bit register. The original 8 general
purpose registers have also been extended to 64-bits: eax, edx, ecx, ebx, esi,
edi, esp, and ebp have new 64-bit versions called rax, rdx, rcx, rbx, rsi,
rdi, rsp, and rbp respectively. The old 32-bit registers map to the least
significant bits of the new 64-bit registers.
New 8-bit registers are also available that map to the 8 least significant bits
of rsi, rdi, rsp, and rbp. These are called sil, dil, spl, and bpl
respectively. Unfortunately, due to the way instructions are encoded, these
new 8-bit registers are encoded the same as the old 8-bit registers ah, dh,
ch, and bh. The processor tells which is being used by the presence of the new
REX prefix that is used to specify the other extended registers. This means it
is illegal to mix the use of ah, dh, ch, and bh with an instruction that
requires the REX prefix for other reasons. For instance:
(NASM syntax) is not a legal instruction because the use of r10 requires a REX
prefix, making it impossible to use ah.
In 64-bit mode, an additional 8 SSE2 registers are also available. These are
named xmm8-xmm15.
add ah, [r10]
By default, most operations in 64-bit mode remain 32-bit; operations that are
64-bit usually require a REX prefix (one bit in the REX prefix determines
whether an operation is 64-bit or 32-bit). Thus, essentially all 32-bit
instructions have a 64-bit version, and the 64-bit versions of instructions
can use extended registers “for free” (as the REX prefix is
already present). Examples in NASM syntax:
Instructions that modify the stack (push, pop, call, ret, enter, and leave) are
implicitly 64-bit. Their 32-bit counterparts are not available, but their
16-bit counterparts are. Examples in NASM syntax:
mov eax, 1 ; 32-bit instruction
mov rcx, 1 ; 64-bit instruction
push eax ; illegal instruction
push rbx ; 1-byte instruction
push r11 ; 2-byte instruction with REX prefix
Results of 32-bit operations are implicitly zero-extended to the upper 32 bits
of the corresponding 64-bit register. 16 and 8 bit operations, on the other
hand, do not affect upper bits of the register (just as in 32-bit and 16-bit
modes). This can be used to generate smaller code in some instances. Examples
in NASM syntax:
mov ecx, 1 ; 1 byte shorter than mov rcx, 1
and edx, 3 ; equivalent to and rdx, 3
For most instructions in 64-bit mode, immediate values remain 32 bits; their
value is sign-extended into the upper 32 bits of the target register prior to
being used. The exception is the mov instruction, which can take a 64-bit
immediate when the destination is a 64-bit register. Examples in NASM syntax:
The handling of mov reg64, unsized immediate is different between YASM and NASM
2.x; YASM follows the above behavior, while NASM 2.x does the following:
add rax, 1 ; optimized down to signed 8-bit
add rax, dword 1 ; force size to 32-bit
add rax, 0xffffffff ; sign-extended 32-bit
add rax, -1 ; same as above
add rax, 0xffffffffffffffff ; truncated to 32-bit (warning)
mov eax, 1 ; 5 byte
mov rax, 1 ; 5 byte (optimized to signed 32-bit)
mov rax, qword 1 ; 10 byte (forced 64-bit)
mov rbx, 0x1234567890abcdef ; 10 byte
mov rcx, 0xffffffff ; 10 byte (does not fit in signed 32-bit)
mov ecx, -1 ; 5 byte, equivalent to above
mov rcx, sym ; 5 byte, 32-bit size default for symbols
mov rcx, qword sym ; 10 byte, override default size
add rax, 0xffffffff ; sign-extended 32-bit immediate
add rax, -1 ; same as above
add rax, 0xffffffffffffffff ; truncated 32-bit (warning)
add rax, sym ; sign-extended 32-bit immediate
mov eax, 1 ; 5 byte (32-bit immediate)
mov rax, 1 ; 10 byte (64-bit immediate)
mov rbx, 0x1234567890abcdef ; 10 byte instruction
mov rcx, 0xffffffff ; 10 byte instruction
mov ecx, -1 ; 5 byte, equivalent to above
mov ecx, sym ; 5 byte (32-bit immediate)
mov rcx, sym ; 10 byte instruction
mov rcx, qword sym ; 10 byte (64-bit immediate)
Just like immediates, displacements, for the most part, remain 32 bits and are
sign extended prior to use. Again, the exception is one restricted form of the
mov instruction: between the al/ax/eax/rax register and a 64-bit absolute
address (no registers allowed in the effective address). In NASM syntax, use
of the 64-bit absolute form requires [qword]. Examples in NASM syntax:
mov eax, [1] ; 32 bit, with sign extension
mov al, [rax-1] ; 32 bit, with sign extension
mov al, [qword 0x1122334455667788] ; 64-bit absolute
mov al, [0x1122334455667788] ; truncated to 32-bit (warning)
In 64-bit mode, a new form of effective addressing is available to make it
easier to write position-independent code. Any memory reference may be made
RIP relative (RIP is the instruction pointer register, which contains the
address of the location immediately following the current instruction).
In NASM syntax, there are two ways to specify RIP-relative addressing:
stores the value 1 ten bytes after the end of the instruction. 10 can
also be a symbolic constant, and will be treated the same way. On the other
hand,
stores the value 1 into the address of symbol symb. This is distinctly
different than the behavior of:
which takes the address of the end of the instruction, adds the address of
symb to it, then stores the value 1 there. If symb is a
variable, this will not store the value 1 into the symb
variable!
Yasm also supports the following syntax for RIP-relative addressing:
The behavior of:
Depends on a mode set by the DEFAULT directive, as follows. The default mode is
always "abs", and in "rel" mode, use of registers, an fs
or gs segment override, or an explicit "abs" override will result in
a non-RIP-relative effective address.
mov dword [rip+10], 1
mov dword [symb wrt rip], 1
mov dword [symb+rip], 1
mov [rel sym], rax ; RIP-relative
mov [abs sym], rax ; not RIP-relative
mov [sym], rax
default rel
mov [sym], rbx ; RIP-relative
mov [abs sym], rbx ; not RIP-relative (explicit override)
mov [rbx+1], rbx ; not RIP-relative (register use)
mov [fs:sym], rbx ; not RIP-relative (fs or gs use)
mov [ds:sym], rbx ; RIP-relative (segment, but not fs or gs)
mov [rel sym], rbx ; RIP-relative (redundant override)
default abs
mov [sym], rbx ; not RIP-relative
mov [abs sym], rbx ; not RIP-relative
mov [rbx+1], rbx ; not RIP-relative
mov [fs:sym], rbx ; not RIP-relative
mov [ds:sym], rbx ; not RIP-relative
mov [rel sym], rbx ; RIP-relative (explicit override)
Usually the size of a memory reference can be deduced by which registers
you´re moving--for example, "mov [rax],ecx" is a 32-bit move,
because ecx is 32 bits. YASM currently gives the non-obvious "invalid
combination of opcode and operands" error if it can´t figure out
how much memory you´re moving. The fix in this case is to add a memory
size specifier: qword, dword, word, or byte.
Here´s a 64-bit memory move, which sets 8 bytes starting at rax:
Here´s a 32-bit memory move, which sets 4 bytes:
Here´s a 16-bit memory move, which sets 2 bytes:
Here´s an 8-bit memory move, which sets 1 byte:
mov qword [rax], 1
mov dword [rax], 1
mov word [rax], 1
mov byte [rax], 1
LC3B ARCHITECTURE¶
The “lc3b” architecture supports the LC-3b ISA as used in the ECE 312 (now ECE 411) course at the University of Illinois, Urbana-Champaign, as well as other university courses. See http://courses.ece.uiuc.edu/ece411/ for more details and example code. The “lc3b” architecture consists of only one machine: “lc3b”.SEE ALSO¶
yasm(1)BUGS¶
When using the “x86” architecture, it is overly easy to generate AMD64 code (using the BITS 64 directive) and generate a 32-bit object file (by failing to specify -m amd64 on the command line or selecting a 64-bit object format). Similarly, specifying -m amd64 does not default the BITS setting to 64. An easy way to avoid this is by directly specifying a 64-bit object format such as -f elf64.AUTHOR¶
Peter Johnson <peter@tortall.net>Author.
COPYRIGHT¶
Copyright © 2004, 2005, 2006, 2007 Peter JohnsonOctober 2006 | Yasm |