Scroll to navigation

gesc2(3) LAPACK gesc2(3)

NAME

gesc2 - gesc2: triangular solve using factor, with complete pivoting

SYNOPSIS

Functions


subroutine cgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)
CGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2. subroutine dgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)
DGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2. subroutine sgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)
SGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2. subroutine zgesc2 (n, a, lda, rhs, ipiv, jpiv, scale)
ZGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.

Detailed Description

Function Documentation

subroutine cgesc2 (integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) rhs, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, real scale)

CGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.

Purpose:


CGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by CGETC2.

Parameters

N


N is INTEGER
The number of columns of the matrix A.

A


A is COMPLEX array, dimension (LDA, N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by CGETC2: A = P * L * U * Q

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1, N).

RHS


RHS is COMPLEX array, dimension N.
On entry, the right hand side vector b.
On exit, the solution vector X.

IPIV


IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

SCALE


SCALE is REAL
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent overflow in the solution.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

subroutine dgesc2 (integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) rhs, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, double precision scale)

DGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.

Purpose:


DGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by DGETC2.

Parameters

N


N is INTEGER
The order of the matrix A.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by DGETC2: A = P * L * U * Q

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1, N).

RHS


RHS is DOUBLE PRECISION array, dimension (N).
On entry, the right hand side vector b.
On exit, the solution vector X.

IPIV


IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

SCALE


SCALE is DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent overflow in the solution.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

subroutine sgesc2 (integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) rhs, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, real scale)

SGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.

Purpose:


SGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by SGETC2.

Parameters

N


N is INTEGER
The order of the matrix A.

A


A is REAL array, dimension (LDA,N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by SGETC2: A = P * L * U * Q

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1, N).

RHS


RHS is REAL array, dimension (N).
On entry, the right hand side vector b.
On exit, the solution vector X.

IPIV


IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

SCALE


SCALE is REAL
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent overflow in the solution.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

subroutine zgesc2 (integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) rhs, integer, dimension( * ) ipiv, integer, dimension( * ) jpiv, double precision scale)

ZGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.

Purpose:


ZGESC2 solves a system of linear equations
A * X = scale* RHS
with a general N-by-N matrix A using the LU factorization with
complete pivoting computed by ZGETC2.

Parameters

N


N is INTEGER
The number of columns of the matrix A.

A


A is COMPLEX*16 array, dimension (LDA, N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by ZGETC2: A = P * L * U * Q

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1, N).

RHS


RHS is COMPLEX*16 array, dimension N.
On entry, the right hand side vector b.
On exit, the solution vector X.

IPIV


IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

SCALE


SCALE is DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent overflow in the solution.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0