Scroll to navigation

la_porpvgrw(3) LAPACK la_porpvgrw(3)

NAME

la_porpvgrw - la_porpvgrw: reciprocal pivot growth

SYNOPSIS

Functions


real function cla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. double precision function dla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. real function sla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. double precision function zla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work)
ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Detailed Description

Function Documentation

real function cla_porpvgrw (character*1 uplo, integer ncols, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, real, dimension( * ) work)

CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


CLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by CPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function dla_porpvgrw (character*1 uplo, integer ncols, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( * ) work)

DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


DLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is DOUBLE PRECISION array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

real function sla_porpvgrw (character*1 uplo, integer ncols, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, real, dimension( * ) work)

SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


SLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is REAL array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is REAL array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function zla_porpvgrw (character*1 uplo, integer ncols, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( * ) work)

ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.

Purpose:


ZLA_PORPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX*16 array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by ZPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0