table of contents
- testing 3.12.0-4
- unstable 3.12.1-2
- experimental 3.12.1-1
ladiv(3) | LAPACK | ladiv(3) |
NAME¶
ladiv - ladiv: complex divide
SYNOPSIS¶
Functions¶
complex function cladiv (x, y)
CLADIV performs complex division in real arithmetic, avoiding
unnecessary overflow. subroutine dladiv (a, b, c, d, p, q)
DLADIV performs complex division in real arithmetic, avoiding
unnecessary overflow. subroutine dladiv1 (a, b, c, d, p, q)
double precision function dladiv2 (a, b, c, d, r, t)
subroutine sladiv (a, b, c, d, p, q)
SLADIV performs complex division in real arithmetic, avoiding
unnecessary overflow. subroutine sladiv1 (a, b, c, d, p, q)
real function sladiv2 (a, b, c, d, r, t)
complex *16 function zladiv (x, y)
ZLADIV performs complex division in real arithmetic, avoiding
unnecessary overflow.
Detailed Description¶
Function Documentation¶
complex function cladiv (complex x, complex y)¶
CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
Purpose:
CLADIV := X / Y, where X and Y are complex. The computation of X / Y
will not overflow on an intermediary step unless the results
overflows.
Parameters
X is COMPLEX
Y
Y is COMPLEX
The complex scalars X and Y.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dladiv (double precision a, double precision b, double precision c, double precision d, double precision p, double precision q)¶
DLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
Purpose:
DLADIV performs complex division in real arithmetic
a + i*b
p + i*q = ---------
c + i*d
The algorithm is due to Michael Baudin and Robert L. Smith
and can be found in the paper
'A Robust Complex Division in Scilab'
Parameters
A is DOUBLE PRECISION
B
B is DOUBLE PRECISION
C
C is DOUBLE PRECISION
D
D is DOUBLE PRECISION
The scalars a, b, c, and d in the above expression.
P
P is DOUBLE PRECISION
Q
Q is DOUBLE PRECISION
The scalars p and q in the above expression.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine sladiv (real a, real b, real c, real d, real p, real q)¶
SLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
Purpose:
SLADIV performs complex division in real arithmetic
a + i*b
p + i*q = ---------
c + i*d
The algorithm is due to Michael Baudin and Robert L. Smith
and can be found in the paper
'A Robust Complex Division in Scilab'
Parameters
A is REAL
B
B is REAL
C
C is REAL
D
D is REAL
The scalars a, b, c, and d in the above expression.
P
P is REAL
Q
Q is REAL
The scalars p and q in the above expression.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
complex*16 function zladiv (complex*16 x, complex*16 y)¶
ZLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
Purpose:
ZLADIV := X / Y, where X and Y are complex. The computation of X / Y
will not overflow on an intermediary step unless the results
overflows.
Parameters
X is COMPLEX*16
Y
Y is COMPLEX*16
The complex scalars X and Y.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |