table of contents
pbequ(3) | LAPACK | pbequ(3) |
NAME¶
pbequ - pbequ: equilibration
SYNOPSIS¶
Functions¶
subroutine cpbequ (uplo, n, kd, ab, ldab, s, scond, amax,
info)
CPBEQU subroutine dpbequ (uplo, n, kd, ab, ldab, s, scond, amax,
info)
DPBEQU subroutine spbequ (uplo, n, kd, ab, ldab, s, scond, amax,
info)
SPBEQU subroutine zpbequ (uplo, n, kd, ab, ldab, s, scond, amax,
info)
ZPBEQU
Detailed Description¶
Function Documentation¶
subroutine cpbequ (character uplo, integer n, integer kd, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) s, real scond, real amax, integer info)¶
CPBEQU
Purpose:
CPBEQU computes row and column scalings intended to equilibrate a
Hermitian positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX array, dimension (LDAB,N)
The upper or lower triangle of the Hermitian band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S
S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dpbequ (character uplo, integer n, integer kd, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)¶
DPBEQU
Purpose:
DPBEQU computes row and column scalings intended to equilibrate a
symmetric positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is DOUBLE PRECISION array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine spbequ (character uplo, integer n, integer kd, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) s, real scond, real amax, integer info)¶
SPBEQU
Purpose:
SPBEQU computes row and column scalings intended to equilibrate a
symmetric positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is REAL array, dimension (LDAB,N)
The upper or lower triangle of the symmetric band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S
S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine zpbequ (character uplo, integer n, integer kd, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)¶
ZPBEQU
Purpose:
ZPBEQU computes row and column scalings intended to equilibrate a
Hermitian positive definite band matrix A and reduce its condition
number (with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangular of A is stored;
= 'L': Lower triangular of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
KD
KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N)
The upper or lower triangle of the Hermitian band matrix A,
stored in the first KD+1 rows of the array. The j-th column
of A is stored in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
LDAB
LDAB is INTEGER
The leading dimension of the array A. LDAB >= KD+1.
S
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |