table of contents
- testing 3.12.0-4
- unstable 3.12.1-2
- experimental 3.12.1-1
porfs(3) | LAPACK | porfs(3) |
NAME¶
porfs - porfs: iterative refinement
SYNOPSIS¶
Functions¶
subroutine cporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb,
x, ldx, ferr, berr, work, rwork, info)
CPORFS subroutine dporfs (uplo, n, nrhs, a, lda, af, ldaf, b,
ldb, x, ldx, ferr, berr, work, iwork, info)
DPORFS subroutine sporfs (uplo, n, nrhs, a, lda, af, ldaf, b,
ldb, x, ldx, ferr, berr, work, iwork, info)
SPORFS subroutine zporfs (uplo, n, nrhs, a, lda, af, ldaf, b,
ldb, x, ldx, ferr, berr, work, rwork, info)
ZPORFS
Detailed Description¶
Function Documentation¶
subroutine cporfs (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)¶
CPORFS
Purpose:
CPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian positive definite,
and provides error bounds and backward error estimates for the
solution.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A
A is COMPLEX array, dimension (LDA,N)
The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by CPOTRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B
B is COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by CPOTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX array, dimension (2*N)
RWORK
RWORK is REAL array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dporfs (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
DPORFS
Purpose:
DPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite,
and provides error bounds and backward error estimates for the
solution.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is DOUBLE PRECISION array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPOTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine sporfs (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
SPORFS
Purpose:
SPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite,
and provides error bounds and backward error estimates for the
solution.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A
A is REAL array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is REAL array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by SPOTRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B
B is REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPOTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is REAL array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine zporfs (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)¶
ZPORFS
Purpose:
ZPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian positive definite,
and provides error bounds and backward error estimates for the
solution.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF
AF is COMPLEX*16 array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by ZPOTRF.
LDAF
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
B
B is COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX*16 array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by ZPOTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX*16 array, dimension (2*N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |