table of contents
ppequ(3) | LAPACK | ppequ(3) |
NAME¶
ppequ - ppequ: equilibration
SYNOPSIS¶
Functions¶
subroutine cppequ (uplo, n, ap, s, scond, amax, info)
CPPEQU subroutine dppequ (uplo, n, ap, s, scond, amax, info)
DPPEQU subroutine sppequ (uplo, n, ap, s, scond, amax, info)
SPPEQU subroutine zppequ (uplo, n, ap, s, scond, amax, info)
ZPPEQU
Detailed Description¶
Function Documentation¶
subroutine cppequ (character uplo, integer n, complex, dimension( * ) ap, real, dimension( * ) s, real scond, real amax, integer info)¶
CPPEQU
Purpose:
CPPEQU computes row and column scalings intended to equilibrate a
Hermitian positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangle of the Hermitian matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S
S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dppequ (character uplo, integer n, double precision, dimension( * ) ap, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)¶
DPPEQU
Purpose:
DPPEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine sppequ (character uplo, integer n, real, dimension( * ) ap, real, dimension( * ) s, real scond, real amax, integer info)¶
SPPEQU
Purpose:
SPPEQU computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is REAL array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S
S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine zppequ (character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)¶
ZPPEQU
Purpose:
ZPPEQU computes row and column scalings intended to equilibrate a
Hermitian positive definite matrix A in packed storage and reduce
its condition number (with respect to the two-norm). S contains the
scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
This choice of S puts the condition number of B within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
The upper or lower triangle of the Hermitian matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
S
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |