table of contents
ptrfs(3) | LAPACK | ptrfs(3) |
NAME¶
ptrfs - ptrfs: iterative refinement
SYNOPSIS¶
Functions¶
subroutine cptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x,
ldx, ferr, berr, work, rwork, info)
CPTRFS subroutine dptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx,
ferr, berr, work, info)
DPTRFS subroutine sptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx,
ferr, berr, work, info)
SPTRFS subroutine zptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb,
x, ldx, ferr, berr, work, rwork, info)
ZPTRFS
Detailed Description¶
Function Documentation¶
subroutine cptrfs (character uplo, integer n, integer nrhs, real, dimension( * ) d, complex, dimension( * ) e, real, dimension( * ) df, complex, dimension( * ) ef, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)¶
CPTRFS
Purpose:
CPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Parameters
UPLO is CHARACTER*1
Specifies whether the superdiagonal or the subdiagonal of the
tridiagonal matrix A is stored and the form of the
factorization:
= 'U': E is the superdiagonal of A, and A = U**H*D*U;
= 'L': E is the subdiagonal of A, and A = L*D*L**H.
(The two forms are equivalent if A is real.)
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D
D is REAL array, dimension (N)
The n real diagonal elements of the tridiagonal matrix A.
E
E is COMPLEX array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix A
(see UPLO).
DF
DF is REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from
the factorization computed by CPTTRF.
EF
EF is COMPLEX array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by CPTTRF
(see UPLO).
B
B is COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by CPTTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR
BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX array, dimension (N)
RWORK
RWORK is REAL array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dptrfs (integer n, integer nrhs, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( * ) df, double precision, dimension( * ) ef, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer info)¶
DPTRFS
Purpose:
DPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Parameters
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D
D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E
E is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF
DF is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by DPTTRF.
EF
EF is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by DPTTRF.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPTTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is DOUBLE PRECISION array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine sptrfs (integer n, integer nrhs, real, dimension( * ) d, real, dimension( * ) e, real, dimension( * ) df, real, dimension( * ) ef, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer info)¶
SPTRFS
Purpose:
SPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Parameters
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D
D is REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.
E
E is REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF
DF is REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by SPTTRF.
EF
EF is REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by SPTTRF.
B
B is REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPTTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR
BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is REAL array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine zptrfs (character uplo, integer n, integer nrhs, double precision, dimension( * ) d, complex*16, dimension( * ) e, double precision, dimension( * ) df, complex*16, dimension( * ) ef, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)¶
ZPTRFS
Purpose:
ZPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.
Parameters
UPLO is CHARACTER*1
Specifies whether the superdiagonal or the subdiagonal of the
tridiagonal matrix A is stored and the form of the
factorization:
= 'U': E is the superdiagonal of A, and A = U**H*D*U;
= 'L': E is the subdiagonal of A, and A = L*D*L**H.
(The two forms are equivalent if A is real.)
N
N is INTEGER
The order of the matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D
D is DOUBLE PRECISION array, dimension (N)
The n real diagonal elements of the tridiagonal matrix A.
E
E is COMPLEX*16 array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix A
(see UPLO).
DF
DF is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from
the factorization computed by ZPTTRF.
EF
EF is COMPLEX*16 array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by ZPTTRF
(see UPLO).
B
B is COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is COMPLEX*16 array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by ZPTTRS.
On exit, the improved solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR
FERR is DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).
BERR
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK
WORK is COMPLEX*16 array, dimension (N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Internal Parameters:
ITMAX is the maximum number of steps of iterative refinement.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |