Scroll to navigation

tgsen(3) LAPACK tgsen(3)

NAME

tgsen - tgsen: reorder generalized Schur form

SYNOPSIS

Functions


subroutine ctgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
CTGSEN subroutine dtgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
DTGSEN subroutine stgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
STGSEN subroutine ztgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
ZTGSEN

Detailed Description

Function Documentation

subroutine ctgsen (integer ijob, logical wantq, logical wantz, logical, dimension( * ) select, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) alpha, complex, dimension( * ) beta, complex, dimension( ldq, * ) q, integer ldq, complex, dimension( ldz, * ) z, integer ldz, integer m, real pl, real pr, real, dimension( * ) dif, complex, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

CTGSEN

Purpose:


CTGSEN reorders the generalized Schur decomposition of a complex
matrix pair (A, B) (in terms of an unitary equivalence trans-
formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the pair (A,B). The leading
columns of Q and Z form unitary bases of the corresponding left and
right eigenspaces (deflating subspaces). (A, B) must be in
generalized Schur canonical form, that is, A and B are both upper
triangular.
CTGSEN also computes the generalized eigenvalues
w(j)= ALPHA(j) / BETA(j)
of the reordered matrix pair (A, B).
Optionally, the routine computes estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of 'projections' onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.

Parameters

IJOB


IJOB is INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of 'projections' onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

SELECT


SELECT is LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster. To
select an eigenvalue w(j), SELECT(j) must be set to
.TRUE..

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is COMPLEX array, dimension(LDA,N)
On entry, the upper triangular matrix A, in generalized
Schur canonical form.
On exit, A is overwritten by the reordered matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is COMPLEX array, dimension(LDB,N)
On entry, the upper triangular matrix B, in generalized
Schur canonical form.
On exit, B is overwritten by the reordered matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

ALPHA


ALPHA is COMPLEX array, dimension (N)

BETA


BETA is COMPLEX array, dimension (N)
The diagonal elements of A and B, respectively,
when the pair (A,B) has been reduced to generalized Schur
form. ALPHA(i)/BETA(i) i=1,...,N are the generalized
eigenvalues.

Q


Q is COMPLEX array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left unitary
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.

Z


Z is COMPLEX array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left unitary
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.

M


M is INTEGER
The dimension of the specified pair of left and right
eigenspaces, (deflating subspaces) 0 <= M <= N.

PL


PL is REAL

PR


PR is REAL
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of 'projections' onto left and right
eigenspace with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3 PL, PR are not referenced.

DIF


DIF is REAL array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl, computed using reversed
communication with CLACN2.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.

WORK


WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= 1
If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M)
If IJOB = 3 or 5, LWORK >= 4*M*(N-M)
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

LIWORK


LIWORK is INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+2;
If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.

INFO


INFO is INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


CTGSEN first collects the selected eigenvalues by computing unitary
U and W that move them to the top left corner of (A, B). In other
words, the selected eigenvalues are the eigenvalues of (A11, B11) in
U**H*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U**H means the conjugate transpose of U. The first
n1 columns of U and W span the specified pair of left and right
eigenspaces (deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
reordered generalized Schur form of (C, D) is given by
(C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22**H, In1) ]
[ kron(In2, B11) -kron(B22**H, In1) ].
Here, Inx is the identity matrix of size nx and A22**H is the
conjugate transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see CLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF
(IJOB = 2 will be used)). See CTGSYL for more details.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

subroutine dtgsen (integer ijob, logical wantq, logical wantz, logical, dimension( * ) select, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) alphar, double precision, dimension( * ) alphai, double precision, dimension( * ) beta, double precision, dimension( ldq, * ) q, integer ldq, double precision, dimension( ldz, * ) z, integer ldz, integer m, double precision pl, double precision pr, double precision, dimension( * ) dif, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

DTGSEN

Purpose:


DTGSEN reorders the generalized real Schur decomposition of a real
matrix pair (A, B) (in terms of an orthonormal equivalence trans-
formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the upper quasi-triangular
matrix A and the upper triangular B. The leading columns of Q and
Z form orthonormal bases of the corresponding left and right eigen-
spaces (deflating subspaces). (A, B) must be in generalized real
Schur canonical form (as returned by DGGES), i.e. A is block upper
triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
triangular.
DTGSEN also computes the generalized eigenvalues
w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
of the reordered matrix pair (A, B).
Optionally, DTGSEN computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of 'projections' onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.

Parameters

IJOB


IJOB is INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of 'projections' onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

SELECT


SELECT is LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster.
To select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is DOUBLE PRECISION array, dimension(LDA,N)
On entry, the upper quasi-triangular matrix A, with (A, B) in
generalized real Schur canonical form.
On exit, A is overwritten by the reordered matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is DOUBLE PRECISION array, dimension(LDB,N)
On entry, the upper triangular matrix B, with (A, B) in
generalized real Schur canonical form.
On exit, B is overwritten by the reordered matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

ALPHAR


ALPHAR is DOUBLE PRECISION array, dimension (N)

ALPHAI


ALPHAI is DOUBLE PRECISION array, dimension (N)

BETA


BETA is DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real generalized Schur form of (A,B) were further reduced
to triangular form using complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.

Q


Q is DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1;
and if WANTQ = .TRUE., LDQ >= N.

Z


Z is DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.

M


M is INTEGER
The dimension of the specified pair of left and right eigen-
spaces (deflating subspaces). 0 <= M <= N.

PL


PL is DOUBLE PRECISION

PR


PR is DOUBLE PRECISION
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of 'projections' onto left and right
eigenspaces with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3, PL and PR are not referenced.

DIF


DIF is DOUBLE PRECISION array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= 4*N+16.
If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

LIWORK


LIWORK is INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+6.
If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.

INFO


INFO is INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


DTGSEN first collects the selected eigenvalues by computing
orthogonal U and W that move them to the top left corner of (A, B).
In other words, the selected eigenvalues are the eigenvalues of
(A11, B11) in:
U**T*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U**T means the transpose of U. The first n1 columns
of U and W span the specified pair of left and right eigenspaces
(deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
reordered generalized real Schur form of (C, D) is given by
(C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22**T, In1) ]
[ kron(In2, B11) -kron(B22**T, In1) ].
Here, Inx is the identity matrix of size nx and A22**T is the
transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see DLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
(IJOB = 2 will be used)). See DTGSYL for more details.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:


[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
1996.

subroutine stgsen (integer ijob, logical wantq, logical wantz, logical, dimension( * ) select, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) alphar, real, dimension( * ) alphai, real, dimension( * ) beta, real, dimension( ldq, * ) q, integer ldq, real, dimension( ldz, * ) z, integer ldz, integer m, real pl, real pr, real, dimension( * ) dif, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

STGSEN

Purpose:


STGSEN reorders the generalized real Schur decomposition of a real
matrix pair (A, B) (in terms of an orthonormal equivalence trans-
formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the upper quasi-triangular
matrix A and the upper triangular B. The leading columns of Q and
Z form orthonormal bases of the corresponding left and right eigen-
spaces (deflating subspaces). (A, B) must be in generalized real
Schur canonical form (as returned by SGGES), i.e. A is block upper
triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
triangular.
STGSEN also computes the generalized eigenvalues
w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
of the reordered matrix pair (A, B).
Optionally, STGSEN computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of 'projections' onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.

Parameters

IJOB


IJOB is INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of 'projections' onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

SELECT


SELECT is LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster.
To select a real eigenvalue w(j), SELECT(j) must be set to
.TRUE.. To select a complex conjugate pair of eigenvalues
w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
either SELECT(j) or SELECT(j+1) or both must be set to
.TRUE.; a complex conjugate pair of eigenvalues must be
either both included in the cluster or both excluded.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is REAL array, dimension(LDA,N)
On entry, the upper quasi-triangular matrix A, with (A, B) in
generalized real Schur canonical form.
On exit, A is overwritten by the reordered matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is REAL array, dimension(LDB,N)
On entry, the upper triangular matrix B, with (A, B) in
generalized real Schur canonical form.
On exit, B is overwritten by the reordered matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

ALPHAR


ALPHAR is REAL array, dimension (N)

ALPHAI


ALPHAI is REAL array, dimension (N)

BETA


BETA is REAL array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
and BETA(j),j=1,...,N are the diagonals of the complex Schur
form (S,T) that would result if the 2-by-2 diagonal blocks of
the real generalized Schur form of (A,B) were further reduced
to triangular form using complex unitary transformations.
If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, with ALPHAI(j+1) negative.

Q


Q is REAL array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1;
and if WANTQ = .TRUE., LDQ >= N.

Z


Z is REAL array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left orthogonal
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.

M


M is INTEGER
The dimension of the specified pair of left and right eigen-
spaces (deflating subspaces). 0 <= M <= N.

PL


PL is REAL

PR


PR is REAL
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of 'projections' onto left and right
eigenspaces with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3, PL and PR are not referenced.

DIF


DIF is REAL array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= 4*N+16.
If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

LIWORK


LIWORK is INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+6.
If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.

INFO


INFO is INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


STGSEN first collects the selected eigenvalues by computing
orthogonal U and W that move them to the top left corner of (A, B).
In other words, the selected eigenvalues are the eigenvalues of
(A11, B11) in:
U**T*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U**T means the transpose of U. The first n1 columns
of U and W span the specified pair of left and right eigenspaces
(deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
reordered generalized real Schur form of (C, D) is given by
(C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22**T, In1) ]
[ kron(In2, B11) -kron(B22**T, In1) ].
Here, Inx is the identity matrix of size nx and A22**T is the
transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see SLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF
(IJOB = 2 will be used)). See STGSYL for more details.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:


[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
1996.

subroutine ztgsen (integer ijob, logical wantq, logical wantz, logical, dimension( * ) select, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) alpha, complex*16, dimension( * ) beta, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldz, * ) z, integer ldz, integer m, double precision pl, double precision pr, double precision, dimension( * ) dif, complex*16, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)

ZTGSEN

Purpose:


ZTGSEN reorders the generalized Schur decomposition of a complex
matrix pair (A, B) (in terms of an unitary equivalence trans-
formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
appears in the leading diagonal blocks of the pair (A,B). The leading
columns of Q and Z form unitary bases of the corresponding left and
right eigenspaces (deflating subspaces). (A, B) must be in
generalized Schur canonical form, that is, A and B are both upper
triangular.
ZTGSEN also computes the generalized eigenvalues
w(j)= ALPHA(j) / BETA(j)
of the reordered matrix pair (A, B).
Optionally, the routine computes estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
(A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
between the matrix pairs (A11, B11) and (A22,B22) that correspond to
the selected cluster and the eigenvalues outside the cluster, resp.,
and norms of 'projections' onto left and right eigenspaces w.r.t.
the selected cluster in the (1,1)-block.

Parameters

IJOB


IJOB is INTEGER
Specifies whether condition numbers are required for the
cluster of eigenvalues (PL and PR) or the deflating subspaces
(Difu and Difl):
=0: Only reorder w.r.t. SELECT. No extras.
=1: Reciprocal of norms of 'projections' onto left and right
eigenspaces w.r.t. the selected cluster (PL and PR).
=2: Upper bounds on Difu and Difl. F-norm-based estimate
(DIF(1:2)).
=3: Estimate of Difu and Difl. 1-norm-based estimate
(DIF(1:2)).
About 5 times as expensive as IJOB = 2.
=4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
version to get it all.
=5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

SELECT


SELECT is LOGICAL array, dimension (N)
SELECT specifies the eigenvalues in the selected cluster. To
select an eigenvalue w(j), SELECT(j) must be set to
.TRUE..

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is COMPLEX*16 array, dimension(LDA,N)
On entry, the upper triangular matrix A, in generalized
Schur canonical form.
On exit, A is overwritten by the reordered matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is COMPLEX*16 array, dimension(LDB,N)
On entry, the upper triangular matrix B, in generalized
Schur canonical form.
On exit, B is overwritten by the reordered matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

ALPHA


ALPHA is COMPLEX*16 array, dimension (N)

BETA


BETA is COMPLEX*16 array, dimension (N)
The diagonal elements of A and B, respectively,
when the pair (A,B) has been reduced to generalized Schur
form. ALPHA(i)/BETA(i) i=1,...,N are the generalized
eigenvalues.

Q


Q is COMPLEX*16 array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
On exit, Q has been postmultiplied by the left unitary
transformation matrix which reorder (A, B); The leading M
columns of Q form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.

Z


Z is COMPLEX*16 array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
On exit, Z has been postmultiplied by the left unitary
transformation matrix which reorder (A, B); The leading M
columns of Z form orthonormal bases for the specified pair of
left eigenspaces (deflating subspaces).
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.

M


M is INTEGER
The dimension of the specified pair of left and right
eigenspaces, (deflating subspaces) 0 <= M <= N.

PL


PL is DOUBLE PRECISION

PR


PR is DOUBLE PRECISION
If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
reciprocal of the norm of 'projections' onto left and right
eigenspace with respect to the selected cluster.
0 < PL, PR <= 1.
If M = 0 or M = N, PL = PR = 1.
If IJOB = 0, 2 or 3 PL, PR are not referenced.

DIF


DIF is DOUBLE PRECISION array, dimension (2).
If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
estimates of Difu and Difl, computed using reversed
communication with ZLACN2.
If M = 0 or N, DIF(1:2) = F-norm([A, B]).
If IJOB = 0 or 1, DIF is not referenced.

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= 1
If IJOB = 1, 2 or 4, LWORK >= 2*M*(N-M)
If IJOB = 3 or 5, LWORK >= 4*M*(N-M)
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

LIWORK


LIWORK is INTEGER
The dimension of the array IWORK. LIWORK >= 1.
If IJOB = 1, 2 or 4, LIWORK >= N+2;
If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.

INFO


INFO is INTEGER
=0: Successful exit.
<0: If INFO = -i, the i-th argument had an illegal value.
=1: Reordering of (A, B) failed because the transformed
matrix pair (A, B) would be too far from generalized
Schur form; the problem is very ill-conditioned.
(A, B) may have been partially reordered.
If requested, 0 is returned in DIF(*), PL and PR.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


ZTGSEN first collects the selected eigenvalues by computing unitary
U and W that move them to the top left corner of (A, B). In other
words, the selected eigenvalues are the eigenvalues of (A11, B11) in
U**H*(A, B)*W = (A11 A12) (B11 B12) n1
( 0 A22),( 0 B22) n2
n1 n2 n1 n2
where N = n1+n2 and U**H means the conjugate transpose of U. The first
n1 columns of U and W span the specified pair of left and right
eigenspaces (deflating subspaces) of (A, B).
If (A, B) has been obtained from the generalized real Schur
decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
reordered generalized Schur form of (C, D) is given by
(C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
and the first n1 columns of Q*U and Z*W span the corresponding
deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
Note that if the selected eigenvalue is sufficiently ill-conditioned,
then its value may differ significantly from its value before
reordering.
The reciprocal condition numbers of the left and right eigenspaces
spanned by the first n1 columns of U and W (or Q*U and Z*W) may
be returned in DIF(1:2), corresponding to Difu and Difl, resp.
The Difu and Difl are defined as:
Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
and
Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
where sigma-min(Zu) is the smallest singular value of the
(2*n1*n2)-by-(2*n1*n2) matrix
Zu = [ kron(In2, A11) -kron(A22**H, In1) ]
[ kron(In2, B11) -kron(B22**H, In1) ].
Here, Inx is the identity matrix of size nx and A22**H is the
conjugate transpose of A22. kron(X, Y) is the Kronecker product between
the matrices X and Y.
When DIF(2) is small, small changes in (A, B) can cause large changes
in the deflating subspace. An approximate (asymptotic) bound on the
maximum angular error in the computed deflating subspaces is
EPS * norm((A, B)) / DIF(2),
where EPS is the machine precision.
The reciprocal norm of the projectors on the left and right
eigenspaces associated with (A11, B11) may be returned in PL and PR.
They are computed as follows. First we compute L and R so that
P*(A, B)*Q is block diagonal, where
P = ( I -L ) n1 Q = ( I R ) n1
( 0 I ) n2 and ( 0 I ) n2
n1 n2 n1 n2
and (L, R) is the solution to the generalized Sylvester equation
A11*R - L*A22 = -A12
B11*R - L*B22 = -B12
Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
An approximate (asymptotic) bound on the average absolute error of
the selected eigenvalues is
EPS * norm((A, B)) / PL.
There are also global error bounds which valid for perturbations up
to a certain restriction: A lower bound (x) on the smallest
F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
(i.e. (A + E, B + F), is
x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
An approximate bound on x can be computed from DIF(1:2), PL and PR.
If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
(L', R') and unperturbed (L, R) left and right deflating subspaces
associated with the selected cluster in the (1,1)-blocks can be
bounded as
max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
See LAPACK User's Guide section 4.11 or the following references
for more information.
Note that if the default method for computing the Frobenius-norm-
based estimate DIF is not wanted (see ZLATDF), then the parameter
IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
(IJOB = 2 will be used)). See ZTGSYL for more details.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0