table of contents
i.evapo.time(1grass) | GRASS GIS User's Manual | i.evapo.time(1grass) |
NAME¶
i.evapo.time - Computes temporal integration of satellite ET actual (ETa) following the daily ET reference (ETo) from meteorological station(s).
KEYWORDS¶
imagery, evapotranspiration
SYNOPSIS¶
i.evapo.time
i.evapo.time --help
i.evapo.time eta=name[,name,...]
eta_doy=name[,name,...]
eto=name[,name,...] eto_doy_min=float
start_period=float end_period=float
output=name [--overwrite] [--help]
[--verbose] [--quiet] [--ui]
Flags:¶
- --overwrite
-
Allow output files to overwrite existing files - --help
-
Print usage summary - --verbose
-
Verbose module output - --quiet
-
Quiet module output - --ui
-
Force launching GUI dialog
Parameters:¶
- eta=name[,name,...] [required]
-
Names of satellite ETa raster maps [mm/d or cm/d] - eta_doy=name[,name,...] [required]
-
Names of satellite ETa Day of Year (DOY) raster maps [0-400] [-] - eto=name[,name,...] [required]
-
Names of meteorological station ETo raster maps [0-400] [mm/d or cm/d] - eto_doy_min=float [required]
-
Value of DOY for ETo first day - start_period=float [required]
-
Value of DOY for the first day of the period studied - end_period=float [required]
-
Value of DOY for the last day of the period studied - output=name [required]
-
Name for output raster map
DESCRIPTION¶
i.evapo.time (i.evapo.time_integration) integrates ETa in time following a reference ET (typically) from a set of meteorological stations dataset. Inputs:
- ETa images
- ETa images DOY (Day of Year)
- ETo images
- ETo DOYmin as a single value
- 1
- each ETa pixel is divided by the same day ETo and become ETrF
- 2
- each ETrF pixel is multiplied by the ETo sum for the representative days
- 3
- Sum all n temporal [ETrF*ETo_sum] pixels to make a summed(ET) in [DOYmin;DOYmax]
representative days calculation: let assume i belongs to range
[DOYmin;DOYmax]
DOYbeforeETa[i] = ( DOYofETa[i] - DOYofETa[i-1] ) / 2 DOYafterETa[i] = ( DOYofETa[i+1] - DOYofETa[i] ) / 2
NOTES¶
ETo images preparation: If you only have one meteorological
station data set, the easiest way is:
n=0 for ETo_val in Eto[1] Eto[2] ... do r.mapcalc "eto$n = $ETo_val" `expr n = n + 1` done
with Eto[1], Eto[2], etc being a simple copy and paste from your data file of all ETo values separated by an empty space from each other.
If you have several meteorological stations data, then you need to grid them by generating Thiessen polygons or using different interpolation methods for each day.
For multi-year calculations, just continue incrementing DOY values above 366, it will continue working, up to maximum input of 400 satellite images.
This is an example of a temporal integration from a weather station as done by Chemin and Alexandridis (2004)
References¶
Chemin and Alexandridis, 2004. Spatial Resolution Improvement of Seasonal Evapotranspiration for Irrigated Rice, Zhanghe Irrigation District, Hubei Province, China. Asian Journal of Geoinformatics, Vol. 5, No. 1, September 2004 (PDF)
SEE ALSO¶
i.eb.eta, i.evapo.mh, i.evapo.pt, i.evapo.pm, r.sun
AUTHOR¶
Yann Chemin, International Rice Research Institute, The Philippines
SOURCE CODE¶
Available at: i.evapo.time source code (history)
Accessed: Thursday Aug 01 05:17:07 2024
Main index | Imagery index | Topics index | Keywords index | Graphical index | Full index
© 2003-2024 GRASS Development Team, GRASS GIS 8.4.0 Reference Manual
GRASS 8.4.0 |