table of contents
- testing 3.12.0-4
- unstable 3.12.1-2
- experimental 3.12.1-1
geqr2(3) | LAPACK | geqr2(3) |
NAME¶
geqr2 - geqr2: QR factor, level 2
SYNOPSIS¶
Functions¶
subroutine cgeqr2 (m, n, a, lda, tau, work, info)
CGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm. subroutine dgeqr2 (m, n, a, lda, tau,
work, info)
DGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm. subroutine sgeqr2 (m, n, a, lda, tau,
work, info)
SGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm. subroutine zgeqr2 (m, n, a, lda, tau,
work, info)
ZGEQR2 computes the QR factorization of a general rectangular matrix
using an unblocked algorithm.
Detailed Description¶
Function Documentation¶
subroutine cgeqr2 (integer m, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( * ) work, integer info)¶
CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
CGEQR2 computes a QR factorization of a complex m-by-n matrix A:
A = Q * ( R ),
( 0 )
where:
Q is a m-by-m orthogonal matrix;
R is an upper-triangular n-by-n matrix;
0 is a (m-n)-by-n zero matrix, if m > n.
Parameters
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the unitary matrix Q as a
product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is COMPLEX array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
subroutine dgeqr2 (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer info)¶
DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
DGEQR2 computes a QR factorization of a real m-by-n matrix A:
A = Q * ( R ),
( 0 )
where:
Q is a m-by-m orthogonal matrix;
R is an upper-triangular n-by-n matrix;
0 is a (m-n)-by-n zero matrix, if m > n.
Parameters
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
subroutine sgeqr2 (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer info)¶
SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
SGEQR2 computes a QR factorization of a real m-by-n matrix A:
A = Q * ( R ),
( 0 )
where:
Q is a m-by-m orthogonal matrix;
R is an upper-triangular n-by-n matrix;
0 is a (m-n)-by-n zero matrix, if m > n.
Parameters
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is REAL array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
subroutine zgeqr2 (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work, integer info)¶
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Purpose:
ZGEQR2 computes a QR factorization of a complex m-by-n matrix A:
A = Q * ( R ),
( 0 )
where:
Q is a m-by-m orthogonal matrix;
R is an upper-triangular n-by-n matrix;
0 is a (m-n)-by-n zero matrix, if m > n.
Parameters
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n); the elements below the diagonal,
with the array TAU, represent the unitary matrix Q as a
product of elementary reflectors (see Further Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is COMPLEX*16 array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Jan 28 2025 00:54:31 | Version 3.12.0 |