Scroll to navigation

gtts2(3) LAPACK gtts2(3)

NAME

gtts2 - gtts2: triangular solve using factor

SYNOPSIS

Functions


subroutine cgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf. subroutine dgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf. subroutine sgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf. subroutine zgtts2 (itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.

Detailed Description

Function Documentation

subroutine cgtts2 (integer itrans, integer n, integer nrhs, complex, dimension( * ) dl, complex, dimension( * ) d, complex, dimension( * ) du, complex, dimension( * ) du2, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb)

CGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.

Purpose:


CGTTS2 solves one of the systems of equations
A * X = B, A**T * X = B, or A**H * X = B,
with a tridiagonal matrix A using the LU factorization computed
by CGTTRF.

Parameters

ITRANS


ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T * X = B (Transpose)
= 2: A**H * X = B (Conjugate transpose)

N


N is INTEGER
The order of the matrix A.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

DL


DL is COMPLEX array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.

D


D is COMPLEX array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.

DU


DU is COMPLEX array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.

DU2


DU2 is COMPLEX array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.

B


B is COMPLEX array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine dgtts2 (integer itrans, integer n, integer nrhs, double precision, dimension( * ) dl, double precision, dimension( * ) d, double precision, dimension( * ) du, double precision, dimension( * ) du2, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb)

DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.

Purpose:


DGTTS2 solves one of the systems of equations
A*X = B or A**T*X = B,
with a tridiagonal matrix A using the LU factorization computed
by DGTTRF.

Parameters

ITRANS


ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T* X = B (Transpose)
= 2: A**T* X = B (Conjugate transpose = Transpose)

N


N is INTEGER
The order of the matrix A.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

DL


DL is DOUBLE PRECISION array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.

D


D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.

DU


DU is DOUBLE PRECISION array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.

DU2


DU2 is DOUBLE PRECISION array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine sgtts2 (integer itrans, integer n, integer nrhs, real, dimension( * ) dl, real, dimension( * ) d, real, dimension( * ) du, real, dimension( * ) du2, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb)

SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.

Purpose:


SGTTS2 solves one of the systems of equations
A*X = B or A**T*X = B,
with a tridiagonal matrix A using the LU factorization computed
by SGTTRF.

Parameters

ITRANS


ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T* X = B (Transpose)
= 2: A**T* X = B (Conjugate transpose = Transpose)

N


N is INTEGER
The order of the matrix A.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

DL


DL is REAL array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.

D


D is REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.

DU


DU is REAL array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.

DU2


DU2 is REAL array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.

B


B is REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine zgtts2 (integer itrans, integer n, integer nrhs, complex*16, dimension( * ) dl, complex*16, dimension( * ) d, complex*16, dimension( * ) du, complex*16, dimension( * ) du2, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb)

ZGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.

Purpose:


ZGTTS2 solves one of the systems of equations
A * X = B, A**T * X = B, or A**H * X = B,
with a tridiagonal matrix A using the LU factorization computed
by ZGTTRF.

Parameters

ITRANS


ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose)
= 1: A**T * X = B (Transpose)
= 2: A**H * X = B (Conjugate transpose)

N


N is INTEGER
The order of the matrix A.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

DL


DL is COMPLEX*16 array, dimension (N-1)
The (n-1) multipliers that define the matrix L from the
LU factorization of A.

D


D is COMPLEX*16 array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.

DU


DU is COMPLEX*16 array, dimension (N-1)
The (n-1) elements of the first super-diagonal of U.

DU2


DU2 is COMPLEX*16 array, dimension (N-2)
The (n-2) elements of the second super-diagonal of U.

IPIV


IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= n, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0