table of contents
- testing 3.12.0-4
- unstable 3.12.1-2
- experimental 3.12.1-1
hecon_3(3) | LAPACK | hecon_3(3) |
NAME¶
hecon_3 - {he,sy}con_3: condition number estimate
SYNOPSIS¶
Functions¶
subroutine checon_3 (uplo, n, a, lda, e, ipiv, anorm,
rcond, work, info)
CHECON_3 subroutine csycon_3 (uplo, n, a, lda, e, ipiv, anorm,
rcond, work, info)
CSYCON_3 subroutine dsycon_3 (uplo, n, a, lda, e, ipiv, anorm,
rcond, work, iwork, info)
DSYCON_3 subroutine ssycon_3 (uplo, n, a, lda, e, ipiv, anorm,
rcond, work, iwork, info)
SSYCON_3 subroutine zhecon_3 (uplo, n, a, lda, e, ipiv, anorm,
rcond, work, info)
ZHECON_3 subroutine zsycon_3 (uplo, n, a, lda, e, ipiv, anorm,
rcond, work, info)
ZSYCON_3
Detailed Description¶
Function Documentation¶
subroutine checon_3 (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, real anorm, real rcond, complex, dimension( * ) work, integer info)¶
CHECON_3
Purpose:
CHECON_3 estimates the reciprocal of the condition number (in the
1-norm) of a complex Hermitian matrix A using the factorization
computed by CHETRF_RK or CHETRF_BK:
A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**H (or L**H) is the conjugate of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is Hermitian and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
This routine uses BLAS3 solver CHETRS_3.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix:
= 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T);
= 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T).
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
Diagonal of the block diagonal matrix D and factors U or L
as computed by CHETRF_RK and CHETRF_BK:
a) ONLY diagonal elements of the Hermitian block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the Hermitian block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CHETRF_RK or CHETRF_BK.
ANORM
ANORM is REAL
The 1-norm of the original matrix A.
RCOND
RCOND is REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is COMPLEX array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
June 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
subroutine csycon_3 (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, real anorm, real rcond, complex, dimension( * ) work, integer info)¶
CSYCON_3
Purpose:
CSYCON_3 estimates the reciprocal of the condition number (in the
1-norm) of a complex symmetric matrix A using the factorization
computed by CSYTRF_RK or CSYTRF_BK:
A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**T (or L**T) is the transpose of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is symmetric and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
This routine uses BLAS3 solver CSYTRS_3.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix:
= 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T);
= 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T).
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
Diagonal of the block diagonal matrix D and factors U or L
as computed by CSYTRF_RK and CSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CSYTRF_RK or CSYTRF_BK.
ANORM
ANORM is REAL
The 1-norm of the original matrix A.
RCOND
RCOND is REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is COMPLEX array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
June 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
subroutine dsycon_3 (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) e, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
DSYCON_3
Purpose:
DSYCON_3 estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric matrix A using the factorization
computed by DSYTRF_RK or DSYTRF_BK:
A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**T (or L**T) is the transpose of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is symmetric and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
This routine uses BLAS3 solver DSYTRS_3.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix:
= 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T);
= 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T).
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
Diagonal of the block diagonal matrix D and factors U or L
as computed by DSYTRF_RK and DSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is DOUBLE PRECISION array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSYTRF_RK or DSYTRF_BK.
ANORM
ANORM is DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND
RCOND is DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is DOUBLE PRECISION array, dimension (2*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
June 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
subroutine ssycon_3 (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) e, integer, dimension( * ) ipiv, real anorm, real rcond, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)¶
SSYCON_3
Purpose:
SSYCON_3 estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric matrix A using the factorization
computed by DSYTRF_RK or DSYTRF_BK:
A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**T (or L**T) is the transpose of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is symmetric and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
This routine uses BLAS3 solver SSYTRS_3.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix:
= 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T);
= 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T).
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
Diagonal of the block diagonal matrix D and factors U or L
as computed by SSYTRF_RK and SSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is REAL array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by SSYTRF_RK or SSYTRF_BK.
ANORM
ANORM is REAL
The 1-norm of the original matrix A.
RCOND
RCOND is REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is REAL array, dimension (2*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
June 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
subroutine zhecon_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)¶
ZHECON_3
Purpose:
ZHECON_3 estimates the reciprocal of the condition number (in the
1-norm) of a complex Hermitian matrix A using the factorization
computed by ZHETRF_RK or ZHETRF_BK:
A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**H (or L**H) is the conjugate of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is Hermitian and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
This routine uses BLAS3 solver ZHETRS_3.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix:
= 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T);
= 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T).
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
Diagonal of the block diagonal matrix D and factors U or L
as computed by ZHETRF_RK and ZHETRF_BK:
a) ONLY diagonal elements of the Hermitian block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX*16 array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the Hermitian block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZHETRF_RK or ZHETRF_BK.
ANORM
ANORM is DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND
RCOND is DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is COMPLEX*16 array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
June 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
subroutine zsycon_3 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)¶
ZSYCON_3
Purpose:
ZSYCON_3 estimates the reciprocal of the condition number (in the
1-norm) of a complex symmetric matrix A using the factorization
computed by ZSYTRF_RK or ZSYTRF_BK:
A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**T (or L**T) is the transpose of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is symmetric and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
This routine uses BLAS3 solver ZSYTRS_3.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix:
= 'U': Upper triangular, form is A = P*U*D*(U**T)*(P**T);
= 'L': Lower triangular, form is A = P*L*D*(L**T)*(P**T).
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
Diagonal of the block diagonal matrix D and factors U or L
as computed by ZSYTRF_RK and ZSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX*16 array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZSYTRF_RK or ZSYTRF_BK.
ANORM
ANORM is DOUBLE PRECISION
The 1-norm of the original matrix A.
RCOND
RCOND is DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is COMPLEX*16 array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
June 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Jan 28 2025 00:54:31 | Version 3.12.0 |