table of contents
heequb(3) | LAPACK | heequb(3) |
NAME¶
heequb - {he,sy}equb: equilibration, power of 2
SYNOPSIS¶
Functions¶
subroutine cheequb (uplo, n, a, lda, s, scond, amax, work,
info)
CHEEQUB subroutine csyequb (uplo, n, a, lda, s, scond, amax,
work, info)
CSYEQUB subroutine dsyequb (uplo, n, a, lda, s, scond, amax,
work, info)
DSYEQUB subroutine ssyequb (uplo, n, a, lda, s, scond, amax,
work, info)
SSYEQUB subroutine zheequb (uplo, n, a, lda, s, scond, amax,
work, info)
ZHEEQUB subroutine zsyequb (uplo, n, a, lda, s, scond, amax,
work, info)
ZSYEQUB
Detailed Description¶
Function Documentation¶
subroutine cheequb (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, complex, dimension( * ) work, integer info)¶
CHEEQUB
Purpose:
CHEEQUB computes row and column scalings intended to equilibrate a
Hermitian matrix A (with respect to the Euclidean norm) and reduce
its condition number. The scale factors S are computed by the BIN
algorithm (see references) so that the scaled matrix B with elements
B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
The N-by-N Hermitian matrix whose scaling factors are to be
computed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S
S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL
Largest absolute value of any matrix element. If AMAX is
very close to overflow or very close to underflow, the
matrix should be scaled.
WORK
WORK is COMPLEX array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
subroutine csyequb (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, complex, dimension( * ) work, integer info)¶
CSYEQUB
Purpose:
CSYEQUB computes row and column scalings intended to equilibrate a
symmetric matrix A (with respect to the Euclidean norm) and reduce
its condition number. The scale factors S are computed by the BIN
algorithm (see references) so that the scaled matrix B with elements
B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
The N-by-N symmetric matrix whose scaling factors are to be
computed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S
S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL
Largest absolute value of any matrix element. If AMAX is
very close to overflow or very close to underflow, the
matrix should be scaled.
WORK
WORK is COMPLEX array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
subroutine dsyequb (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, double precision, dimension( * ) work, integer info)¶
DSYEQUB
Purpose:
DSYEQUB computes row and column scalings intended to equilibrate a
symmetric matrix A (with respect to the Euclidean norm) and reduce
its condition number. The scale factors S are computed by the BIN
algorithm (see references) so that the scaled matrix B with elements
B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
The N-by-N symmetric matrix whose scaling factors are to be
computed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION
Largest absolute value of any matrix element. If AMAX is
very close to overflow or very close to underflow, the
matrix should be scaled.
WORK
WORK is DOUBLE PRECISION array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
subroutine ssyequb (character uplo, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) s, real scond, real amax, real, dimension( * ) work, integer info)¶
SSYEQUB
Purpose:
SSYEQUB computes row and column scalings intended to equilibrate a
symmetric matrix A (with respect to the Euclidean norm) and reduce
its condition number. The scale factors S are computed by the BIN
algorithm (see references) so that the scaled matrix B with elements
B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
The N-by-N symmetric matrix whose scaling factors are to be
computed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S
S is REAL array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is REAL
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is REAL
Largest absolute value of any matrix element. If AMAX is
very close to overflow or very close to underflow, the
matrix should be scaled.
WORK
WORK is REAL array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
subroutine zheequb (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, complex*16, dimension( * ) work, integer info)¶
ZHEEQUB
Purpose:
ZHEEQUB computes row and column scalings intended to equilibrate a
Hermitian matrix A (with respect to the Euclidean norm) and reduce
its condition number. The scale factors S are computed by the BIN
algorithm (see references) so that the scaled matrix B with elements
B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
The N-by-N Hermitian matrix whose scaling factors are to be
computed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION
Largest absolute value of any matrix element. If AMAX is
very close to overflow or very close to underflow, the
matrix should be scaled.
WORK
WORK is COMPLEX*16 array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
subroutine zsyequb (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) s, double precision scond, double precision amax, complex*16, dimension( * ) work, integer info)¶
ZSYEQUB
Purpose:
ZSYEQUB computes row and column scalings intended to equilibrate a
symmetric matrix A (with respect to the Euclidean norm) and reduce
its condition number. The scale factors S are computed by the BIN
algorithm (see references) so that the scaled matrix B with elements
B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
the smallest possible condition number over all possible diagonal
scalings.
Parameters
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
The N-by-N symmetric matrix whose scaling factors are to be
computed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S
S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND
SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX
AMAX is DOUBLE PRECISION
Largest absolute value of any matrix element. If AMAX is
very close to overflow or very close to underflow, the
matrix should be scaled.
WORK
WORK is COMPLEX*16 array, dimension (2*N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
References:
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |