table of contents
hetri2x(3) | LAPACK | hetri2x(3) |
NAME¶
hetri2x - {he,sy}tri2x: inverse
SYNOPSIS¶
Functions¶
subroutine chetri2x (uplo, n, a, lda, ipiv, work, nb, info)
CHETRI2X subroutine csytri2x (uplo, n, a, lda, ipiv, work, nb,
info)
CSYTRI2X subroutine dsytri2x (uplo, n, a, lda, ipiv, work, nb,
info)
DSYTRI2X subroutine ssytri2x (uplo, n, a, lda, ipiv, work, nb,
info)
SSYTRI2X subroutine zhetri2x (uplo, n, a, lda, ipiv, work, nb,
info)
ZHETRI2X subroutine zsytri2x (uplo, n, a, lda, ipiv, work, nb,
info)
ZSYTRI2X
Detailed Description¶
Function Documentation¶
subroutine chetri2x (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( n+nb+1,* ) work, integer nb, integer info)¶
CHETRI2X
Purpose:
CHETRI2X computes the inverse of a complex Hermitian indefinite matrix
A using the factorization A = U*D*U**H or A = L*D*L**H computed by
CHETRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**H;
= 'L': Lower triangular, form is A = L*D*L**H.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the NNB diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by CHETRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the NNB structure of D
as determined by CHETRF.
WORK
WORK is COMPLEX array, dimension (N+NB+1,NB+3)
NB
NB is INTEGER
Block size
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine csytri2x (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( n+nb+1,* ) work, integer nb, integer info)¶
CSYTRI2X
Purpose:
CSYTRI2X computes the inverse of a real symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
CSYTRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the NNB diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by CSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the NNB structure of D
as determined by CSYTRF.
WORK
WORK is COMPLEX array, dimension (N+NB+1,NB+3)
NB
NB is INTEGER
Block size
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine dsytri2x (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( n+nb+1,* ) work, integer nb, integer info)¶
DSYTRI2X
Purpose:
DSYTRI2X computes the inverse of a real symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
DSYTRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the NNB diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by DSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the NNB structure of D
as determined by DSYTRF.
WORK
WORK is DOUBLE PRECISION array, dimension (N+NB+1,NB+3)
NB
NB is INTEGER
Block size
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine ssytri2x (character uplo, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( n+nb+1,* ) work, integer nb, integer info)¶
SSYTRI2X
Purpose:
SSYTRI2X computes the inverse of a real symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
SSYTRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the NNB diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by SSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the NNB structure of D
as determined by SSYTRF.
WORK
WORK is REAL array, dimension (N+NB+1,NB+3)
NB
NB is INTEGER
Block size
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine zhetri2x (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( n+nb+1,* ) work, integer nb, integer info)¶
ZHETRI2X
Purpose:
ZHETRI2X computes the inverse of a COMPLEX*16 Hermitian indefinite matrix
A using the factorization A = U*D*U**H or A = L*D*L**H computed by
ZHETRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**H;
= 'L': Lower triangular, form is A = L*D*L**H.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the NNB diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by ZHETRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the NNB structure of D
as determined by ZHETRF.
WORK
WORK is COMPLEX*16 array, dimension (N+NB+1,NB+3)
NB
NB is INTEGER
Block size
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
subroutine zsytri2x (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( n+nb+1,* ) work, integer nb, integer info)¶
ZSYTRI2X
Purpose:
ZSYTRI2X computes the inverse of a complex symmetric indefinite matrix
A using the factorization A = U*D*U**T or A = L*D*L**T computed by
ZSYTRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**T;
= 'L': Lower triangular, form is A = L*D*L**T.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the NNB diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by ZSYTRF.
On exit, if INFO = 0, the (symmetric) inverse of the original
matrix. If UPLO = 'U', the upper triangular part of the
inverse is formed and the part of A below the diagonal is not
referenced; if UPLO = 'L' the lower triangular part of the
inverse is formed and the part of A above the diagonal is
not referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the NNB structure of D
as determined by ZSYTRF.
WORK
WORK is COMPLEX*16 array, dimension (N+NB+1,NB+3)
NB
NB is INTEGER
Block size
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |