Scroll to navigation

la_gbrpvgrw(3) LAPACK la_gbrpvgrw(3)

NAME

la_gbrpvgrw - la_gbrpvgrw: reciprocal pivot growth

SYNOPSIS

Functions


real function cla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix. double precision function dla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
DLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix. real function sla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
SLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix. double precision function zla_gbrpvgrw (n, kl, ku, ncols, ab, ldab, afb, ldafb)
ZLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Detailed Description

Function Documentation

real function cla_gbrpvgrw (integer n, integer kl, integer ku, integer ncols, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldafb, * ) afb, integer ldafb)

CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


CLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is COMPLEX array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is COMPLEX array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by CGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function dla_gbrpvgrw (integer n, integer kl, integer ku, integer ncols, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( ldafb, * ) afb, integer ldafb)

DLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


DLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by DGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

real function sla_gbrpvgrw (integer n, integer kl, integer ku, integer ncols, real, dimension( ldab, * ) ab, integer ldab, real, dimension( ldafb, * ) afb, integer ldafb)

SLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


SLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is REAL array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by SGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function zla_gbrpvgrw (integer n, integer kl, integer ku, integer ncols, complex*16, dimension( ldab, * ) ab, integer ldab, complex*16, dimension( ldafb, * ) afb, integer ldafb)

ZLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.

Purpose:


ZLA_GBRPVGRW computes the reciprocal pivot growth factor
norm(A)/norm(U). The 'max absolute element' norm is used. If this is
much less than 1, the stability of the LU factorization of the
(equilibrated) matrix A could be poor. This also means that the
solution X, estimated condition numbers, and error bounds could be
unreliable.

Parameters

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

KL


KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.

KU


KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.

NCOLS


NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.

AB


AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KL+KU+1.

AFB


AFB is COMPLEX*16 array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as
computed by ZGBTRF. U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
and the multipliers used during the factorization are stored
in rows KL+KU+2 to 2*KL+KU+1.

LDAFB


LDAFB is INTEGER
The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0