Scroll to navigation

lanht(3) LAPACK lanht(3)

NAME

lanht - lan{ht,st}: Hermitian/symmetric matrix, tridiagonal

SYNOPSIS

Functions


real function clanht (norm, n, d, e)
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix. double precision function dlanst (norm, n, d, e)
DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. real function slanst (norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. double precision function zlanht (norm, n, d, e)
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.

Detailed Description

Function Documentation

real function clanht (character norm, integer n, real, dimension( * ) d, complex, dimension( * ) e)

CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.

Purpose:


CLANHT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex Hermitian tridiagonal matrix A.

Returns

CLANHT


CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in CLANHT as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, CLANHT is
set to zero.

D


D is REAL array, dimension (N)
The diagonal elements of A.

E


E is COMPLEX array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function dlanst (character norm, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e)

DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.

Purpose:


DLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.

Returns

DLANST


DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in DLANST as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANST is
set to zero.

D


D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.

E


E is DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

real function slanst (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)

SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.

Purpose:


SLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.

Returns

SLANST


SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in SLANST as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANST is
set to zero.

D


D is REAL array, dimension (N)
The diagonal elements of A.

E


E is REAL array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

double precision function zlanht (character norm, integer n, double precision, dimension( * ) d, complex*16, dimension( * ) e)

ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.

Purpose:


ZLANHT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex Hermitian tridiagonal matrix A.

Returns

ZLANHT


ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters

NORM


NORM is CHARACTER*1
Specifies the value to be returned in ZLANHT as described
above.

N


N is INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANHT is
set to zero.

D


D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.

E


E is COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0