table of contents
lanht(3) | LAPACK | lanht(3) |
NAME¶
lanht - lan{ht,st}: Hermitian/symmetric matrix, tridiagonal
SYNOPSIS¶
Functions¶
real function clanht (norm, n, d, e)
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian tridiagonal matrix. double precision function dlanst (norm,
n, d, e)
DLANST returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric
tridiagonal matrix. real function slanst (norm, n, d, e)
SLANST returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a real symmetric
tridiagonal matrix. double precision function zlanht (norm, n, d, e)
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the
infinity norm, or the element of largest absolute value of a complex
Hermitian tridiagonal matrix.
Detailed Description¶
Function Documentation¶
real function clanht (character norm, integer n, real, dimension( * ) d, complex, dimension( * ) e)¶
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
Purpose:
CLANHT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex Hermitian tridiagonal matrix A.
Returns
CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
Parameters
NORM is CHARACTER*1
Specifies the value to be returned in CLANHT as described
above.
N
N is INTEGER
The order of the matrix A. N >= 0. When N = 0, CLANHT is
set to zero.
D
D is REAL array, dimension (N)
The diagonal elements of A.
E
E is COMPLEX array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
double precision function dlanst (character norm, integer n, double precision, dimension( * ) d, double precision, dimension( * ) e)¶
DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
DLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.
Returns
DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
Parameters
NORM is CHARACTER*1
Specifies the value to be returned in DLANST as described
above.
N
N is INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANST is
set to zero.
D
D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
E
E is DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
real function slanst (character norm, integer n, real, dimension( * ) d, real, dimension( * ) e)¶
SLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.
Purpose:
SLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.
Returns
SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
Parameters
NORM is CHARACTER*1
Specifies the value to be returned in SLANST as described
above.
N
N is INTEGER
The order of the matrix A. N >= 0. When N = 0, SLANST is
set to zero.
D
D is REAL array, dimension (N)
The diagonal elements of A.
E
E is REAL array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
double precision function zlanht (character norm, integer n, double precision, dimension( * ) d, complex*16, dimension( * ) e)¶
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
Purpose:
ZLANHT returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
complex Hermitian tridiagonal matrix A.
Returns
ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
Parameters
NORM is CHARACTER*1
Specifies the value to be returned in ZLANHT as described
above.
N
N is INTEGER
The order of the matrix A. N >= 0. When N = 0, ZLANHT is
set to zero.
D
D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
E
E is COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Wed Feb 7 2024 11:30:40 | Version 3.12.0 |