table of contents
- testing 3.12.0-4
- unstable 3.12.1-2
- experimental 3.12.1-1
syconvf(3) | LAPACK | syconvf(3) |
NAME¶
syconvf - syconvf: convert to/from hetrf to hetrf_rk format
SYNOPSIS¶
Functions¶
subroutine csyconvf (uplo, way, n, a, lda, e, ipiv, info)
CSYCONVF subroutine dsyconvf (uplo, way, n, a, lda, e, ipiv,
info)
DSYCONVF subroutine ssyconvf (uplo, way, n, a, lda, e, ipiv,
info)
SSYCONVF subroutine zsyconvf (uplo, way, n, a, lda, e, ipiv,
info)
ZSYCONVF
Detailed Description¶
Function Documentation¶
subroutine csyconvf (character uplo, character way, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, integer info)¶
CSYCONVF
Purpose:
If parameter WAY = 'C':
CSYCONVF converts the factorization output format used in
CSYTRF provided on entry in parameter A into the factorization
output format used in CSYTRF_RK (or CSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in CSYTRF into
the format used in CSYTRF_RK (or CSYTRF_BK).
If parameter WAY = 'R':
CSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in CSYTRF_RK
(or CSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in CSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in CSYTRF_RK
(or CSYTRF_BK) into the format used in CSYTRF.
CSYCONVF can also convert in Hermitian matrix case, i.e. between
formats used in CHETRF and CHETRF_RK (or CHETRF_BK).
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular
WAY
WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
CSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
CSYTRF_RK or CSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
CSYTRF_RK or CSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
CSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in CSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in CSYTRF_RK
( or CSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in CSYTRF_RK
( or CSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in CSYTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
subroutine dsyconvf (character uplo, character way, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) e, integer, dimension( * ) ipiv, integer info)¶
DSYCONVF
Purpose:
If parameter WAY = 'C':
DSYCONVF converts the factorization output format used in
DSYTRF provided on entry in parameter A into the factorization
output format used in DSYTRF_RK (or DSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in DSYTRF into
the format used in DSYTRF_RK (or DSYTRF_BK).
If parameter WAY = 'R':
DSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in DSYTRF_RK
(or DSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in DSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in DSYTRF_RK
(or DSYTRF_BK) into the format used in DSYTRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular
WAY
WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
DSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
DSYTRF_RK or DSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
DSYTRF_RK or DSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
DSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is DOUBLE PRECISION array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in DSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in DSYTRF_RK
( or DSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in DSYTRF_RK
( or DSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in DSYTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
subroutine ssyconvf (character uplo, character way, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) e, integer, dimension( * ) ipiv, integer info)¶
SSYCONVF
Purpose:
If parameter WAY = 'C':
SSYCONVF converts the factorization output format used in
SSYTRF provided on entry in parameter A into the factorization
output format used in SSYTRF_RK (or SSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in SSYTRF into
the format used in SSYTRF_RK (or SSYTRF_BK).
If parameter WAY = 'R':
SSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in SSYTRF_RK
(or SSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in SSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in SSYTRF_RK
(or SSYTRF_BK) into the format used in SSYTRF.
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular
WAY
WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
SSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
SSYTRF_RK or SSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
SSYTRF_RK or SSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
SSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is REAL array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in SSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in SSYTRF_RK
( or SSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in SSYTRF_RK
( or SSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in SSYTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
subroutine zsyconvf (character uplo, character way, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * ) ipiv, integer info)¶
ZSYCONVF
Purpose:
If parameter WAY = 'C':
ZSYCONVF converts the factorization output format used in
ZSYTRF provided on entry in parameter A into the factorization
output format used in ZSYTRF_RK (or ZSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in ZSYTRF into
the format used in ZSYTRF_RK (or ZSYTRF_BK).
If parameter WAY = 'R':
ZSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in ZSYTRF_RK
(or ZSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in ZSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in ZSYTRF_RK
(or ZSYTRF_BK) into the format used in ZSYTRF.
ZSYCONVF can also convert in Hermitian matrix case, i.e. between
formats used in ZHETRF and ZHETRF_RK (or ZHETRF_BK).
Parameters
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular
WAY
WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
ZSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
ZSYTRF_RK or ZSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
ZSYTRF_RK or ZSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
ZSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX*16 array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed
IPIV
IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in ZSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in ZSYTRF_RK
( or ZSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in ZSYTRF_RK
( or ZSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in ZSYTRF.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Jan 28 2025 00:54:31 | Version 3.12.0 |