Scroll to navigation

unmlq(3) LAPACK unmlq(3)

NAME

unmlq - {un,or}mlq: multiply by Q from gelqf

SYNOPSIS

Functions


subroutine cunmlq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMLQ subroutine dormlq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMLQ subroutine sormlq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMLQ subroutine zunmlq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
ZUNMLQ

Detailed Description

Function Documentation

subroutine cunmlq (character side, character trans, integer m, integer n, integer k, complex, dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc, * ) c, integer ldc, complex, dimension( * ) work, integer lwork, integer info)

CUNMLQ

Purpose:


CUNMLQ overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k
elementary reflectors
Q = H(k)**H . . . H(2)**H H(1)**H
as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is COMPLEX array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
CGELQF in the first k rows of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

TAU


TAU is COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CGELQF.

C


C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine dormlq (character side, character trans, integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer lwork, integer info)

DORMLQ

Purpose:


DORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGELQF in the first k rows of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

TAU


TAU is DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.

C


C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine sormlq (character side, character trans, integer m, integer n, integer k, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c, integer ldc, real, dimension( * ) work, integer lwork, integer info)

SORMLQ

Purpose:


SORMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by SGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGELQF in the first k rows of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

TAU


TAU is REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGELQF.

C


C is REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

subroutine zunmlq (character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)

ZUNMLQ

Purpose:


ZUNMLQ overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k
elementary reflectors
Q = H(k)**H . . . H(2)**H H(1)**H
as returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is COMPLEX*16 array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
ZGELQF in the first k rows of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

TAU


TAU is COMPLEX*16 array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZGELQF.

C


C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Wed Feb 7 2024 11:30:40 Version 3.12.0