table of contents
Complex(3pm) | User Contributed Perl Documentation | Complex(3pm) |
NAME¶
PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming library (complex number)
SYNOPSIS¶
use PDL; use PDL::LinearAlgebra::Complex; $a = random(cdouble, 100, 100); $s = zeroes(cdouble, 100); $u = zeroes(cdouble, 100, 100); $v = zeroes(cdouble, 100, 100); $info = 0; $job = 0; cgesdd($a, $job, $info, $s , $u, $v);
DESCRIPTION¶
This module provides an interface to parts of the lapack library (complex numbers). These routines accept either float or double ndarrays.
cgtsv¶
Signature: (complex [io]DL(n);complex [io]D(n);complex [io]DU(n);complex [io]B(n,nrhs); int [o]info())
Solves the equation
A * X = B
where A is an "n" by "n" tridiagonal matrix, by Gaussian elimination with partial pivoting, and B is an "n" by "nrhs" matrix.
Note that the equation "A**T*X = B" may be solved by interchanging the order of the arguments DU and DL.
NB This differs from the LINPACK function "cgtsl" in that "DL" starts from its first element, while the LINPACK equivalent starts from its second element.
Arguments ========= DL: On entry, DL must contain the (n-1) sub-diagonal elements of A. On exit, DL is overwritten by the (n-2) elements of the second super-diagonal of the upper triangular matrix U from the LU factorization of A, in DL(1), ..., DL(n-2). D: On entry, D must contain the diagonal elements of A. On exit, D is overwritten by the n diagonal elements of U. DU: On entry, DU must contain the (n-1) super-diagonal elements of A. On exit, DU is overwritten by the (n-1) elements of the first super-diagonal of the U. B: On entry, the n by nrhs matrix of right hand side matrix B. On exit, if info = 0, the n by nrhs solution matrix X. info: = 0: successful exit < 0: if info = -i, the i-th argument had an illegal value > 0: if info = i, U(i,i) is exactly zero, and the solution has not been computed. The factorization has not been completed unless i = n.
$dl = random(float, 9) + random(float, 9) * i; $d = random(float, 10) + random(float, 10) * i; $du = random(float, 9) + random(float, 9) * i; $b = random(10,5) + random(10,5) * i; cgtsv($dl, $d, $du, $b, ($info=null)); print "X is:\n$b" unless $info;
cgesvd¶
Signature: (complex [io]A(m,n); int jobu(); int jobvt(); [o]s(minmn=CALC(PDLMIN($SIZE(m),$SIZE(n))));complex [o]U(p,p);complex [o]VT(s,s); int [o]info(); [t]rwork(rworkn=CALC(5*$SIZE(minmn))))
Complex version of "gesvd" in PDL::LinearAlgebra::Real.
The SVD is written
A = U * SIGMA * ConjugateTranspose(V)
cgesdd¶
Signature: (complex [io]A(m,n); int jobz(); [o]s(minmn=CALC(PDLMIN($SIZE(m),$SIZE(n))));complex [o]U(p,p);complex [o]VT(s,s); int [o]info(); int [t]iwork(iworkn))
Complex version of "gesdd" in PDL::LinearAlgebra::Real.
The SVD is written
A = U * SIGMA * ConjugateTranspose(V)
cggsvd¶
Signature: (complex [io]A(m,n); int jobu(); int jobv(); int jobq();complex [io]B(p,n); int [o]k(); int [o]l();[o]alpha(n);[o]beta(n);complex [o]U(q,q);complex [o]V(r,r);complex [o]Q(s,s); int [o]iwork(n); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "ggsvd" in PDL::LinearAlgebra::Real
cgeev¶
Signature: (complex [io]A(n,n); int jobvl(); int jobvr();complex [o]w(n);complex [o]vl(m,m);complex [o]vr(p,p); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "geev" in PDL::LinearAlgebra::Real
cgeevx¶
Signature: (complex [io]A(n,n); int jobvl(); int jobvr(); int balance(); int sense();complex [o]w(n);complex [o]vl(m,m);complex [o]vr(p,p); int [o]ilo(); int [o]ihi(); [o]scale(n); [o]abnrm(); [o]rconde(q); [o]rcondv(r); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "geevx" in PDL::LinearAlgebra::Real
cggev¶
Signature: (complex [io]A(n,n); int jobvl();int jobvr();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))))
Complex version of "ggev" in PDL::LinearAlgebra::Real
cggevx¶
Signature: (complex [io]A(n,n);int balanc();int jobvl();int jobvr();int sense();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VL(m,m);complex [o]VR(p,p);int [o]ilo();int [o]ihi();[o]lscale(n);[o]rscale(n);[o]abnrm();[o]bbnrm();[o]rconde(r);[o]rcondv(s);int [o]info(); [t]rwork(rworkn=CALC(6*$SIZE(n))); int [t]bwork(bworkn); int [t]iwork(iworkn))
Complex version of "ggevx" in PDL::LinearAlgebra::Real
cgees¶
Signature: (complex [io]A(n,n); int jobvs(); int sort();complex [o]w(n);complex [o]vs(p,p); int [o]sdim(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)
Complex version of "gees" in PDL::LinearAlgebra::Real
select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An complex eigenvalue w is selected if select_func(complex(w)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(complex(w)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+2.
cgeesx¶
Signature: (complex [io]A(n,n); int jobvs(); int sort(); int sense();complex [o]w(n);complex [o]vs(p,p); int [o]sdim(); [o]rconde();[o]rcondv(); int [o]info(); [t]rwork(n); int [t]bwork(bworkn);SV* select_func)
Complex version of "geesx" in PDL::LinearAlgebra::Real
select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An complex eigenvalue w is selected if select_func(complex(w)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(complex(w)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+2.
cgges¶
Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))); int [t]bwork(bworkn);SV* select_func)
Complex version of "ggees" in PDL::LinearAlgebra::Real
select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An eigenvalue w = w/beta is selected if select_func(complex(w), complex(beta)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(complex(w),complex(beta)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+2.
cggesx¶
Signature: (complex [io]A(n,n); int jobvsl();int jobvsr();int sort();int sense();complex [io]B(n,n);complex [o]alpha(n);complex [o]beta(n);complex [o]VSL(m,m);complex [o]VSR(p,p);int [o]sdim();[o]rconde(q=2);[o]rcondv(q=2);int [o]info(); [t]rwork(rworkn=CALC(8*$SIZE(n))); int [t]bwork(bworkn); int [t]iwork(iworkn=CALC($SIZE(n)+2));SV* select_func)
Complex version of "ggeesx" in PDL::LinearAlgebra::Real
select_func: If sort = 1, select_func is used to select eigenvalues to sort to the top left of the Schur form. If sort = 0, select_func is not referenced. An eigenvalue w = w/beta is selected if select_func(complex(w), complex(beta)) is true; Note that a selected complex eigenvalue may no longer satisfy select_func(complex(w),complex(beta)) = 1 after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to N+3.
cheev¶
Signature: (complex [io]A(n,n); int jobz(); int uplo(); [o]w(n); int [o]info(); [t]rwork(rworkn=CALC(3*($SIZE(n)-2))))
Complex version of "syev" in PDL::LinearAlgebra::Real for Hermitian matrix
cheevd¶
Signature: (complex [io]A(n,n); int jobz(); int uplo(); [o]w(n); int [o]info())
Complex version of "syevd" in PDL::LinearAlgebra::Real for Hermitian matrix
cheevx¶
Signature: (complex [io]A(n,n); int jobz(); int range(); int uplo(); vl(); vu(); int il(); int iu(); abstol(); int [o]m(); [o]w(n);complex [o]z(p,p);int [o]ifail(n); int [o]info(); [t]rwork(rworkn=CALC(7*$SIZE(n))); int [t]iwork(iworkn=CALC(5*$SIZE(n))))
Complex version of "syevx" in PDL::LinearAlgebra::Real for Hermitian matrix
cheevr¶
Signature: (complex [io]A(n,n); int jobz(); int range(); int uplo(); vl(); vu(); int il(); int iu(); abstol(); int [o]m(); [o]w(n);complex [o]z(p,q);int [o]isuppz(r); int [o]info())
Complex version of "syevr" in PDL::LinearAlgebra::Real for Hermitian matrix
chegv¶
Signature: (complex [io]A(n,n);int itype();int jobz(); int uplo();complex [io]B(n,n);[o]w(n); int [o]info(); [t]rwork(rworkn=CALC(3*($SIZE(n)-2))))
Complex version of "sygv" in PDL::LinearAlgebra::Real for Hermitian matrix
chegvd¶
Signature: (complex [io]A(n,n);int itype();int jobz(); int uplo();complex [io]B(n,n);[o]w(n); int [o]info())
Complex version of "sygvd" in PDL::LinearAlgebra::Real for Hermitian matrix
chegvx¶
Signature: (complex [io]A(n,n);int itype();int jobz();int range(); int uplo();complex [io]B(n,n);vl();vu();int il(); int iu();abstol();int [o]m();[o]w(n);complex [o]Z(p,p);int [o]ifail(n);int [o]info(); [t]rwork(rworkn=CALC(7*$SIZE(n))); int [t]iwork(iworkn=CALC(5*$SIZE(n))); )
Complex version of "sygvx" in PDL::LinearAlgebra::Real for Hermitian matrix
cgesv¶
Signature: (complex [io]A(n,n);complex [io]B(n,m); int [o]ipiv(n); int [o]info())
Complex version of "gesv" in PDL::LinearAlgebra::Real
cgesvx¶
Signature: (complex [io]A(n,n); int trans(); int fact();complex [io]B(n,m);complex [io]af(n,n); int [io]ipiv(n); int [io]equed(); [o]r(p); [o]c(q);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); [o]rpvgrw(); int [o]info(); [t]rwork(rworkn=CALC(4*$SIZE(n))); [t]work(rworkn))
Complex version of "gesvx" in PDL::LinearAlgebra::Real.
trans: Specifies the form of the system of equations: = 0: A * X = B (No transpose) = 1: A' * X = B (Transpose) = 2: A**H * X = B (Conjugate transpose)
csysv¶
Signature: (complex [io]A(n,n); int uplo();complex [io]B(n,m); int [o]ipiv(n); int [o]info())
Complex version of "sysv" in PDL::LinearAlgebra::Real
csysvx¶
Signature: (complex A(n,n); int uplo(); int fact();complex B(n,m);complex [io]af(n,n); int [io]ipiv(n);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))
Complex version of "sysvx" in PDL::LinearAlgebra::Real
chesv¶
Signature: (complex [io]A(n,n); int uplo();complex [io]B(n,m); int [o]ipiv(n); int [o]info())
Complex version of "sysv" in PDL::LinearAlgebra::Real for Hermitian matrix
chesvx¶
Signature: (complex A(n,n); int uplo(); int fact();complex B(n,m);complex [io]af(n,n); int [io]ipiv(n);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(n))
Complex version of "sysvx" in PDL::LinearAlgebra::Real for Hermitian matrix
cposv¶
Signature: (complex [io]A(n,n); int uplo();complex [io]B(n,m); int [o]info())
Complex version of "posv" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cposvx¶
Signature: (complex [io]A(n,n); int uplo(); int fact();complex [io]B(n,m);complex [io]af(n,n); int [io]equed(); [o]s(p);complex [o]X(n,m); [o]rcond(); [o]ferr(m); [o]berr(m); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "posvx" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cgels¶
Signature: (complex [io]A(m,n); int trans();complex [io]B(p,q);int [o]info())
Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose. Complex version of "gels" in PDL::LinearAlgebra::Real.
trans: = 0: the linear system involves A; = 1: the linear system involves A**H.
cgelsy¶
Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); int [io]jpvt(n); int [o]rank();int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "gelsy" in PDL::LinearAlgebra::Real
cgelss¶
Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); [o]s(r); int [o]rank();int [o]info(); [t]rwork(rworkn=CALC(5*PDLMIN($SIZE(m),$SIZE(n)))))
Complex version of "gelss" in PDL::LinearAlgebra::Real
cgelsd¶
Signature: (complex [io]A(m,n);complex [io]B(p,q); rcond(); [o]s(minmn=CALC(PDLMAX(1,PDLMIN($SIZE(m),$SIZE(n))))); int [o]rank();int [o]info(); int [t]iwork(iworkn); [t]rwork(rworkn))
Complex version of "gelsd" in PDL::LinearAlgebra::Real
cgglse¶
Signature: (complex [io]A(m,n);complex [io]B(p,n);complex [io]c(m);complex [io]d(p);complex [o]x(n);int [o]info())
Complex version of "gglse" in PDL::LinearAlgebra::Real
cggglm¶
Signature: (complex [io]A(n,m);complex [io]B(n,p);complex [io]d(n);complex [o]x(m);complex [o]y(p);int [o]info())
Complex version of "ggglm" in PDL::LinearAlgebra::Real
cgetrf¶
Signature: (complex [io]A(m,n); int [o]ipiv(p=CALC(PDLMIN($SIZE(m),$SIZE(n)))); int [o]info())
Complex version of "getrf" in PDL::LinearAlgebra::Real
cgetf2¶
Signature: (complex [io]A(m,n); int [o]ipiv(p=CALC(PDLMIN($SIZE(m),$SIZE(n)))); int [o]info())
Complex version of "getf2" in PDL::LinearAlgebra::Real
csytrf¶
Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())
Complex version of "sytrf" in PDL::LinearAlgebra::Real
csytf2¶
Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())
Complex version of "sytf2" in PDL::LinearAlgebra::Real
cchetrf¶
Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info(); [t]work(workn))
Complex version of "sytrf" in PDL::LinearAlgebra::Real for Hermitian matrix
chetf2¶
Signature: (complex [io]A(n,n); int uplo(); int [o]ipiv(n); int [o]info())
Complex version of "sytf2" in PDL::LinearAlgebra::Real for Hermitian matrix
cpotrf¶
Signature: (complex [io]A(n,n); int uplo(); int [o]info())
Complex version of "potrf" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cpotf2¶
Signature: (complex [io]A(n,n); int uplo(); int [o]info())
Complex version of "potf2" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
cgetri¶
Signature: (complex [io]A(n,n); int ipiv(n); int [o]info())
Complex version of "getri" in PDL::LinearAlgebra::Real
csytri¶
Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn=CALC(2*$SIZE(n))))
Complex version of "sytri" in PDL::LinearAlgebra::Real
chetri¶
Signature: (complex [io]A(n,n); int uplo(); int ipiv(n); int [o]info(); [t]work(workn=CALC(2*$SIZE(n))))
Complex version of "sytri" in PDL::LinearAlgebra::Real for Hermitian matrix
cpotri¶
Signature: (complex [io]A(n,n); int uplo(); int [o]info())
Complex version of "potri" in PDL::LinearAlgebra::Real
ctrtri¶
Signature: (complex [io]A(n,n); int uplo(); int diag(); int [o]info())
Complex version of "trtri" in PDL::LinearAlgebra::Real
ctrti2¶
Signature: (complex [io]A(n,n); int uplo(); int diag(); int [o]info())
Complex version of "trti2" in PDL::LinearAlgebra::Real
cgetrs¶
Signature: (complex A(n,n); int trans();complex [io]B(n,m); int ipiv(n); int [o]info())
Complex version of "getrs" in PDL::LinearAlgebra::Real
Arguments ========= trans: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose;
csytrs¶
Signature: (complex A(n,n); int uplo();complex [io]B(n,m); int ipiv(n); int [o]info())
Complex version of "sytrs" in PDL::LinearAlgebra::Real
chetrs¶
Signature: (complex A(n,n); int uplo();complex [io]B(n,m); int ipiv(n); int [o]info())
Complex version of "sytrs" in PDL::LinearAlgebra::Real for Hermitian matrix
cpotrs¶
Signature: (complex A(n,n); int uplo();complex [io]B(n,m); int [o]info())
Complex version of "potrs" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
ctrtrs¶
Signature: (complex A(n,n); int uplo(); int trans(); int diag();complex [io]B(n,m); int [o]info())
Complex version of "trtrs" in PDL::LinearAlgebra::Real
Arguments ========= trans: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose;
clatrs¶
Signature: (complex A(n,n); int uplo(); int trans(); int diag(); int normin();complex [io]x(n); [o]scale();[io]cnorm(n);int [o]info())
Complex version of "latrs" in PDL::LinearAlgebra::Real
Arguments ========= trans: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose;
cgecon¶
Signature: (complex A(n,n); int norm(); anorm(); [o]rcond();int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "gecon" in PDL::LinearAlgebra::Real
csycon¶
Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "sycon" in PDL::LinearAlgebra::Real
checon¶
Signature: (complex A(n,n); int uplo(); int ipiv(n); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))))
Complex version of "sycon" in PDL::LinearAlgebra::Real for Hermitian matrix
cpocon¶
Signature: (complex A(n,n); int uplo(); anorm(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))); [t]rwork(n))
Complex version of "pocon" in PDL::LinearAlgebra::Real for Hermitian positive definite matrix
ctrcon¶
Signature: (complex A(n,n); int norm();int uplo();int diag(); [o]rcond();int [o]info(); [t]work(workn=CALC(4*$SIZE(n))); [t]rwork(n))
Complex version of "trcon" in PDL::LinearAlgebra::Real
cgeqp3¶
Signature: (complex [io]A(m,n); int [io]jpvt(n);complex [o]tau(k); int [o]info(); [t]rwork(rworkn=CALC(2*$SIZE(n))))
Complex version of "geqp3" in PDL::LinearAlgebra::Real
cgeqrf¶
Signature: (complex [io]A(m,n);complex [o]tau(k); int [o]info())
Complex version of "geqrf" in PDL::LinearAlgebra::Real
cungqr¶
Signature: (complex [io]A(m,n);complex tau(k); int [o]info())
Complex version of "orgqr" in PDL::LinearAlgebra::Real
cunmqr¶
Signature: (complex A(p,k); int side(); int trans();complex tau(k);complex [io]C(m,n);int [o]info())
Complex version of "ormqr" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgelqf¶
Signature: (complex [io]A(m,n);complex [o]tau(k); int [o]info())
Complex version of "gelqf" in PDL::LinearAlgebra::Real
cunglq¶
Signature: (complex [io]A(m,n);complex tau(k); int [o]info())
Complex version of "orglq" in PDL::LinearAlgebra::Real
cunmlq¶
Signature: (complex A(k,p); int side(); int trans();complex tau(k);complex [io]C(m,n);int [o]info())
Complex version of "ormlq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgeqlf¶
Signature: (complex [io]A(m,n);complex [o]tau(k); int [o]info())
Complex version of "geqlf" in PDL::LinearAlgebra::Real
cungql¶
Signature: (complex [io]A(m,n);complex tau(k); int [o]info())
cunmql¶
Signature: (complex A(p,k); int side(); int trans();complex tau(k);complex [io]C(m,n);int [o]info())
Complex version of "ormql" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgerqf¶
Signature: (complex [io]A(m,n);complex [o]tau(k); int [o]info())
Complex version of "gerqf" in PDL::LinearAlgebra::Real
cungrq¶
Signature: (complex [io]A(m,n);complex tau(k); int [o]info())
Complex version of "orgrq" in PDL::LinearAlgebra::Real.
cunmrq¶
Signature: (complex A(k,p); int side(); int trans();complex tau(k);complex [io]C(m,n);int [o]info())
Complex version of "ormrq" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
ctzrzf¶
Signature: (complex [io]A(m,n);complex [o]tau(k); int [o]info())
Complex version of "tzrzf" in PDL::LinearAlgebra::Real
cunmrz¶
Signature: (complex A(k,p); int side(); int trans();complex tau(k);complex [io]C(m,n);int [o]info())
Complex version of "ormrz" in PDL::LinearAlgebra::Real. Here trans = 1 means conjugate transpose.
cgehrd¶
Signature: (complex [io]A(n,n); int ilo();int ihi();complex [o]tau(k); int [o]info())
Complex version of "gehrd" in PDL::LinearAlgebra::Real
cunghr¶
Signature: (complex [io]A(n,n); int ilo();int ihi();complex tau(k); int [o]info())
Complex version of "orghr" in PDL::LinearAlgebra::Real
chseqr¶
Signature: (complex [io]H(n,n); int job();int compz();int ilo();int ihi();complex [o]w(n);complex [o]Z(m,m); int [o]info())
Complex version of "hseqr" in PDL::LinearAlgebra::Real
ctrevc¶
Signature: (complex T(n,n); int side();int howmny();int select(q);complex [o]VL(m,m);complex [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn=CALC(5*$SIZE(n))))
Complex version of "trevc" in PDL::LinearAlgebra::Real
ctgevc¶
Signature: (complex A(n,n); int side();int howmny();complex B(n,n);int select(q);complex [o]VL(m,m);complex [o]VR(p,p);int [o]m(); int [o]info(); [t]work(workn=CALC(6*$SIZE(n))))
Complex version of "tgevc" in PDL::LinearAlgebra::Real
cgebal¶
Signature: (complex [io]A(n,n); int job(); int [o]ilo();int [o]ihi();[o]scale(n); int [o]info())
Complex version of "gebal" in PDL::LinearAlgebra::Real
clange¶
Signature: (complex A(n,m); int norm(); [o]b(); [t]work(workn))
Complex version of "lange" in PDL::LinearAlgebra::Real
clansy¶
Signature: (complex A(n,n); int uplo(); int norm(); [o]b(); [t]work(workn))
Complex version of "lansy" in PDL::LinearAlgebra::Real
clantr¶
Signature: (complex A(m,n); int uplo(); int norm();int diag(); [o]b(); [t]work(workn))
Complex version of "lantr" in PDL::LinearAlgebra::Real
cgemm¶
Signature: (complex A(m,n); int transa(); int transb();complex B(p,q);complex alpha();complex beta();complex [io]C(r,s))
Complex version of "gemm" in PDL::LinearAlgebra::Real.
Arguments ========= transa: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose; transb: = 0: No transpose; = 1: Transpose; = 2: Conjugate transpose;
cmmult¶
Signature: (complex A(m,n);complex B(p,m);complex [o]C(p,n))
Complex version of "mmult" in PDL::LinearAlgebra::Real
ccrossprod¶
Signature: (complex A(n,m);complex B(p,m);complex [o]C(p,n))
Complex version of "crossprod" in PDL::LinearAlgebra::Real
csyrk¶
Signature: (complex A(m,n); int uplo(); int trans();complex alpha();complex beta();complex [io]C(p,p))
Complex version of "syrk" in PDL::LinearAlgebra::Real
cdot¶
Signature: (complex a(n);complex b(n);complex [o]c())
Complex version of "dot" in PDL::LinearAlgebra::Real
cdotc¶
Signature: (complex a(n);complex b(n);complex [o]c())
Forms the dot product of two vectors, conjugating the first vector.
caxpy¶
Signature: (complex a(n);complex alpha();complex [io]b(n))
Complex version of "axpy" in PDL::LinearAlgebra::Real
cnrm2¶
Signature: (complex a(n);[o]b())
Complex version of "nrm2" in PDL::LinearAlgebra::Real
casum¶
Signature: (complex a(n);[o]b())
Complex version of "asum" in PDL::LinearAlgebra::Real
cscal¶
Signature: (complex [io]a(n);complex scale())
Complex version of "scal" in PDL::LinearAlgebra::Real
csscal¶
Signature: (complex [io]a(n);scale())
Scales a complex vector by a real constant.
crotg¶
Signature: (complex [io]a();complex b();[o]c();complex [o]s())
Complex version of "rotg" in PDL::LinearAlgebra::Real
clacpy¶
Signature: (complex A(m,n); int uplo();complex [o]B(p,n))
Complex version of "lacpy" in PDL::LinearAlgebra::Real
claswp¶
Signature: (complex [io]A(m,n); int k1(); int k2(); int ipiv(p))
Complex version of "laswp" in PDL::LinearAlgebra::Real
ccharpol¶
Signature: (A(c=2,n,n);[o]Y(c=2,n,n);[o]out(c=2,p=CALC($SIZE(n)+1)); [t]rwork(rworkn=CALC(2*$SIZE(n)*$SIZE(n))))
Complex version of "charpol" in PDL::LinearAlgebra::Real
AUTHOR¶
Copyright (C) Gr�gory Vanuxem 2005-2018.
This library is free software; you can redistribute it and/or modify it under the terms of the Perl Artistic License as in the file Artistic_2 in this distribution.
2025-01-04 | perl v5.40.0 |