Scroll to navigation

socket(7) Miscellaneous Information Manual socket(7)

НАИМЕНОВАНИЕ

socket - интерфейс сокетов Linux

ОБЗОР

#include <sys/socket.h>
sockfd = socket(int socket_family, int socket_type, int protocol);

ОПИСАНИЕ

В этой справочной странице описывается пользовательский интерфейс уровня сетевых сокетов Linux. Совместимый с сокетами BSD, он предоставляет унифицированный интерфейс между пользовательскими процессами и стеком сетевых протоколов в ядре. Модули протоколов группируются по семействам протоколов, такими, как AF_INET, AF_IPX и AF_PACKET, и типам сокетов, такими, как SOCK_STREAM или SOCK_DGRAM. Более подробная информация о семействах и типах приведена в socket(2).

Функции уровня сокетов

These functions are used by the user process to send or receive packets and to do other socket operations. For more information, see their respective manual pages.

Вызов socket(2) создаёт сокет, connect(2) соединяет сокет с удалённым сокетным адресом, bind(2) привязывает сокет к локальному адресу, listen(2) сообщает сокету, что должны приниматься новые соединения, а accept(2) используется для получения нового сокета для нового входящего соединения. Вызов socketpair(2) возвращает два соединённых анонимных сокета (реализовано только для некоторых локальных семейств, например AF_UNIX).

Вызовы send(2), sendto(2) и sendmsg(2) отправляют данные в сокет, а recv(2), recvfrom(2) и recvmsg(2) принимают данные из сокета. Вызовы poll(2) и select(2) ожидают поступления данных или готовятся к передаче данных. Кроме того, для чтения и записи данных могут использоваться стандартные операции ввода-вывода: write(2), writev(2), sendfile(2), read(2) и readv(2).

Вызов getsockname(2) возвращает адрес локального сокета, а getpeername(2) возвращает адрес удалённого сокета. Вызовы getsockopt(2) и setsockopt(2) используются для установки или считывания параметров протокола или уровня сокетов. Вызов ioctl(2) может быть использован для установки или чтения некоторых других параметров.

Вызов close(2) используется для закрытия сокета. Вызов shutdown(2) закрывает части полнодуплексного сокетного соединения.

Перемещение (seeking), или вызовы pread(2) и pwrite(2) с ненулевой позицией, для сокетов не поддерживается.

Для сокетов возможно создание неблокирующего ввода/вывода путём установки в файловый дескриптор сокета флага O_NONBLOCK с помощью вызова fcntl(2). При этом все блокировавшие раньше операции, будут возвращать EAGAIN (операция должна быть повторена позднее); connect(2) возвратит ошибку EINPROGRESS. Пользователь может подождать наступления различных событий через poll(2) или select(2).

События ввода-вывода
Событие Флаг poll Когда происходит
Чтение POLLIN Поступили новые данные.
Чтение POLLIN Установка соединения выполнена (для сокетов с установлением соединения)
Чтение POLLHUP Другая сторона инициировала запрос на разъединение.
Чтение POLLHUP Соединение разорвано (только для протоколов с установлением соединения). Если производится запись в сокет, то также посылается сигнал SIGPIPE.
Запись POLLOUT Сокет имеет достаточно места в буфере отправки для записи в него новых данных.
Чтение/Запись POLLIN | POLLOUT Исходящий connect(2) завершён.
Чтение/Запись POLLERR Произошла асинхронная ошибка.
Чтение/Запись POLLHUP Другая сторона закрыла (shut down) одно направление.
Исключение POLLPRI Пришли неотложные данные. После посылается сигнал SIGURG.

Альтернативе poll(2) и select(2) в ядре существует возможность информировать приложение о событиях с помощью сигнала SIGIO. Для этого необходимо установить с помощью fcntl(2) в файловом дескрипторе сокета флаг O_ASYNC, а также назначить с помощью sigaction(2) корректный обработчик сигнала SIGIO. Смотрите ниже раздел Сигналы.

Структуры адреса сокета

Каждый сокетный домен имеет свой формат сокетных адресов, выраженный в отдельной адресной структуре. Каждая из этих структур начинается с целочисленного поля «семейства» (с типом sa_family_t), в котором указывается тип адресной структуры. Это позволяет различным системным вызовам (например, connect(2), bind(2), accept(2), getsockname(2), getpeername(2)), которые являются общими для всех сокетов, определить домен конкретного сокетного адреса.

Для передачи сокетного адреса любого типа через программный интерфейс сокетов служит тип struct sockaddr. Целью данного типа является приведение типов сокетных адресов определённого домена к «общему» типу, что позволяет избежать предупреждений компилятора о несовпадении типов в вызовах API сокетов.

Также, программный интерфейс сокетов предоставляет тип данных struct sockaddr_storage. Данный тип удобен для размещения всех поддерживаемых структур сокетных адресов определённого домена; он достаточно большой и имеет корректное выравнивание (в частности, он позволяет хранить сокетные адреса IPv6). Для определения типа сокетного адреса, который хранится в структуре, служит следующее поле:



sa_family_t ss_family;

Структура sockaddr_storage полезна для программ, которые должны работать с сокетными адресами единообразно (например, в программах, использующих одновременно сокетные адреса IPv4 и IPv6).

Параметры сокета

Следующие параметры сокета могут быть установлены с помощью setsockopt(2) или прочитаны с помощью getsockopt(2) с уровнем сокета, равным SOL_SOCKET для всех сокетов:

Определить, был или не был данный сокет помечен для прослушивания и приёма соединений с помощью listen(2). Возвращаемое значение 0 обозначает, что это не прослушивающий сокет. Значение 1 обозначает, что это прослушивающий сокет. Данный параметр сокета доступен только для чтения.
Присоединить классическую (SO_ATTACH_FILTER) или расширенную (SO_ATTACH_BPF) программу BPF к сокету, которая будет использоваться как фильтр входящих пакетов. Пакет будет отброшен, если фильтрующая программа возвращает ноль. Если фильтрующая программа возвращает ненулевое значение, меньше длины данных пакета, то пакет будет обрезан до возвращаемой длины. Если возвращаемое фильтром значение больше или равно длине данных пакета, то пакет разрешён к обработке без изменений.
Для SO_ATTACH_FILTER аргументом является структура sock_fprog, определяемая в <linux/filter.h>:

struct sock_fprog {

unsigned short len;
struct sock_filter *filter; };

Для SO_ATTACH_BPF аргументом является файловый дескриптор, возвращаемый системным вызовом bpf(2), он должен указывать на программу с типом BPF_PROG_TYPE_SOCKET_FILTER.
Эти параметры могут быть назначены заданному сокету несколько раз, если перед этим заменять фильтрующую программу. Для одного сокета могут вызываться классическая и расширенная версии, но предыдущий фильтр всегда будет заменён, так как для сокета допускается определять не более одного фильтра.
Классический и расширенный BPF описаны в файле исходного кода ядра Documentation/networking/filter.txt.
При использовании вместе с SO_REUSEPORT эти параметры позволяют пользователю задавать классическую (SO_ATTACH_REUSEPORT_CBPF) или расширенную (SO_ATTACH_REUSEPORT_EBPF) программу BPF, которая определяет как пакеты назначаются сокетам в группе reuseport (то есть всем сокетам, у которых установлен SO_REUSEPORT, и использующим один локальный адрес для приёма пакетов).
Программа BPF должна возвращать индекс от 0 до N-1, представляющий сокет, который должен получить пакет (где N — количество сокетов в группе). Если программа BPF возвращает некорректный индекс, то выбор сокета будет выполнен с помощью простого механизма SO_REUSEPORT.
Сокеты нумеруются в порядке их добавления в группу (то есть, в порядке вызовов bind(2) для сокетов UDP и в порядке вызовов listen(2) для сокетов TCP). Новые сокеты, добавляемые в группу reuseport, будут наследовать программу BPF. Когда сокет удаляется из группы reuseport (с помощью close(2)), последний сокет в группе будет перемещён в позицию закрытого сокета.
Эти параметры могут быть повторно назначены в любое время любому сокету в группе для замены текущей программы BPF, используемой всеми сокетами в группе.
Для SO_ATTACH_REUSEPORT_CBPF учитывается тот же тип аргумента как у SO_ATTACH_FILTER, а для SO_ATTACH_REUSEPORT_EBPF учитывается тот же тип аргумента как у SO_ATTACH_BPF.
Поддержка этого свойства для UDP доступна начиная с Linux 4.5; Поддержка этого свойства для TCP доступна начиная с Linux 4.6.
Bind this socket to a particular device like “eth0”, as specified in the passed interface name. If the name is an empty string or the option length is zero, the socket device binding is removed. The passed option is a variable-length null-terminated interface name string with the maximum size of IFNAMSIZ. If a socket is bound to an interface, only packets received from that particular interface are processed by the socket. Note that this works only for some socket types, particularly AF_INET sockets. It is not supported for packet sockets (use normal bind(2) there).
До Linux 3.8, данный параметр сокета можно было устанавливать, но нельзя прочитать с помощью getsockopt(2). Начиная с Linux 3.8 он доступен для чтения. Аргумент optlen должен содержать размер буфера, способного разместить имя устройства; рекомендуемое значение — IFNAMSIZ байт. Реальная длина имени устройства возвращается обратно через аргумент optlen.
Задать или считать флаг широковещания. Если он установлен, то через датаграммные сокеты разрешено отправлять пакеты на широковещательный адрес. Этот параметр не действует на потоковые сокеты.
Разрешить совместимость по ошибкам с BSD. Используется модулем протокола UDP в Linux версии 2.0 и 2.2. Если включено, то полученные UDP-сокетом ошибки ICMP не будут передаваться пользовательской программе. В последний версиях ядер поддержка этого параметра удалена: в Linux 2.4 он игнорируется, а в Linux 2.6 при использовании в программе для него генерируется предупреждение ядра (printk()). В Linux 2.0 также включён параметр совместимости по ошибкам с BSD и для неструктурированных сокетов (произвольное изменение заголовка, пропуск флага широковещательной передачи), но в Linux 2.2 это было удалено.
Включить отладку сокета. Разрешено только процессам с мандатом CAP_NET_ADMIN или имеющим нулевой идентификатор эффективного пользователя.
Эти два параметра, синонимы, можно использовать для удаления классической или расширенной программы BPF, присоединённой к сокету с помощью SO_ATTACH_FILTER или SO_ATTACH_BPF. Значение параметра игнорируется.
Получить доменный сокет в виде целого числа; пример возвращаемого значения: AF_INET6. Подробней смотрите в socket(2). Этот параметр сокета доступен только для чтения.
Получить и очистить ожидающую обработки ошибку сокета. Этот параметр сокета доступен только для чтения. Ожидает целое число.
Не выполнять отправку через шлюз, посылать только на машины, соединенные напрямую. Тот же эффект может быть достигнут путём установки для сокета флага MSG_DONTROUTE во время вызова send(2). В качестве параметра ожидается целочисленный логический флаг.
Изменяет или возвращает привязку сокета к ЦП. В качестве параметра ожидается целочисленный логический флаг.

int cpu = 1;
setsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu,

sizeof(cpu));

Так как все пакеты одного потока (т. е., все пакеты одной связки 4-х значений (4-tuple)) поступают в одно очередь RX, которая связана с определённым ЦП, обычно, это используется для привязки слушающего процесса к очереди RX, чтобы входящий поток, обрабатываемый слушающим, был на том же ЦП, который обслуживает очередь RX. Это предоставляет оптимальное поведение NUMA и поддерживает кэши ЦП в актуальном состоянии.
Returns a system-level unique ID called NAPI ID that is associated with a RX queue on which the last packet associated with that socket is received.
This can be used by an application to split the incoming flows among worker threads based on the RX queue on which the packets associated with the flows are received. It allows each worker thread to be associated with a NIC HW receive queue and service all the connection requests received on that RX queue. This mapping between an app thread and a HW NIC queue streamlines the flow of data from the NIC to the application.
Включить отправку «поддерживающих» (keep-alive) сообщений для сокетов, ориентированных на соединение. Ожидается целочисленный логический флаг.
Задать или считать параметр SO_LINGER. Аргументом является структура linger.

struct linger {

int l_onoff; /* задержка активна */
int l_linger; /* величина задержки в секундах */ };

Если этот параметр установлен, то close(2) или shutdown(2) не вернут управление до тех пор, пока не будут отправлены все сообщения в очереди сокета или до истечения времени задержки (linger). В противном случае вызовы вернут управление немедленно и закрытие будет произведено в фоновом режиме. Если сокет закрывается как часть вызова exit(2), то задержка всегда происходит в фоновом режиме.
Если указан, то это запрещает изменять фильтры, связанные с сокетом. К фильтрам относятся любые, добавленные с помощью параметров сокета SO_ATTACH_FILTER SO_ATTACH_BPF SO_ATTACH_REUSEPORT_CBPF и SO_ATTACH_REUSEPORT_EBPF.
Обычно, он используется так: настраивается неструктурированный сокет привилегированного процесса (операция требует мандата CAP_NET_RAW), применяется ограничивающий фильтр, назначается параметр SO_LOCK_FILTER, а затем сбрасываются привилегии или файловый дескриптор сокета передаётся непривилегированного процессу через доменный сокет UNIX.
После установки параметра SO_LOCK_FILTER, все попытки изменить, удалить присоединённый к сокету фильтр или отключить с помощью параметра SO_LOCK_FILTER, будут завершаться с ошибкой EPERM.
Set the mark for each packet sent through this socket (similar to the netfilter MARK target but socket-based). Changing the mark can be used for mark-based routing without netfilter or for packet filtering. Setting this option requires the CAP_NET_ADMIN or CAP_NET_RAW (since Linux 5.17) capability.
Если включён этот параметр, то внепоточные данные помещаются непосредственно во входной поток данных. В противном случае внепоточные данные передаются только, если во время приёма установлен флаг MSG_OOB.
Enable or disable the receiving of the SCM_CREDENTIALS control message. For more information, see unix(7).
Enable or disable the receiving of the SCM_SECURITY control message. For more information, see unix(7).
Этот параметр, который пока поддерживается только для сокетов unix(7), устанавливает значение «смещения выборки» (peek offset) для системного вызова recv(2), когда он используется с флагом MSG_PEEK.
Если этому параметру присваивается отрицательное значение (равен -1 для всех новых сокетов), то действует обычное правило: recv(2) с флагом MSG_PEEK выбирает данные из начала (front) очереди.
Если этому параметру присваивается положительное значение или ноль, то следующая выборка данных из очереди сокета произойдёт по байтовому смещению, определяемому значением этого параметра. В то же время, «смещение выборки» будет увеличено на количество байт, выбранных из очереди, то есть последовательные операции выборки возвращают следующие данные из очереди.
Если данные удалены из начала очереди с помощью вызова recv(2) (или подобного) без флага MSG_PEEK, то «смещение выборки» будет уменьшено на количество удалённых байт. Другими словами, приём данных без флага MSG_PEEK корректирует «смещение выборки» относительно поддерживаемого относительного положения данных в очереди, и последующая выборка возвратит данные, которые были бы получены, если бы данные не удалялись.
Для датаграммных сокетов, если «смещение выборки» указывает в середину пакета, то возвращаемые данные маркируются флагом MSG_TRUNC.
В следующем примере показано использование SO_PEEK_OFF. Предположим, в очереди потокового сокета есть входные данные:

aabbccddeeff
    

Следующая последовательность вызовов recv(2) выполнила бы то, что описано в комментариях:

int ov = 4;                  // Set peek offset to 4
setsockopt(fd, SOL_SOCKET, SO_PEEK_OFF, &ov, sizeof(ov));
recv(fd, buf, 2, MSG_PEEK);  // Peeks "cc"; offset set to 6
recv(fd, buf, 2, MSG_PEEK);  // Peeks "dd"; offset set to 8
recv(fd, buf, 2, 0);         // Reads "aa"; offset set to 6
recv(fd, buf, 2, MSG_PEEK);  // Peeks "ee"; offset set to 8
    

Возвращает учётные данные (credentials) ответного процесса, подключённого к сокету. Дополнительную информацию смотрите в unix(7).
Return the security context of the peer socket connected to this socket. For further details, see unix(7) and ip(7).
Установить определяемый протоколом приоритет для всех пакетов, отправляемых из этого сокета. Linux использует это значение для управления сетевыми очередями: пакеты с более высоким приоритетом могут быть обработаны раньше (в зависимости от выбранного для устройства способа постановки в очередь). Установка значения приоритета не из диапазона 0 до 6 требует мандата CAP_NET_ADMIN.
Получить протокол сокета в виде целого числа; пример возвращаемого значения: IPPROTO_SCTP. Подробней смотрите в socket(2). Этот параметр сокета доступен только для чтения.
Задать или получить максимальный размер буфера приёма сокета (в байтах). Ядро удваивает это значение (для пространства под учёт ресурсов (bookkeeping overhead)) при установке этого параметра с помощью setsockopt(2), и это удвоенное значение возвращается getsockopt(2). Значение по умолчанию устанавливается через файл /proc/sys/net/core/rmem_default, а максимальное возможное значение устанавливается через файл /proc/sys/net/core/rmem_max. Минимальное (удвоенное) значение для этого параметра равно 256.
С помощью этого параметра сокета привилегированный (CAP_NET_ADMIN) процесс может выполнить ту же работу, что и с помощью SO_RCVBUF, но возможно превысить ограничение rmem_max.
Задать минимальное количество байт в буфере до которого уровень сокета будет отправлять данные протоколу (SO_SNDLOWAT) или получать их от пользователя (SO_RCVLOWAT). Начальное значение этих двух элементов равно 1. Для SO_SNDLOWAT значение в Linux изменить нельзя (setsockopt(2) завершает выполнение с ошибкой ENOPROTOOPT). Значение для SO_RCVLOWAT можно изменить начиная с Linux версии 2.4.
Before Linux 2.6.28 select(2), poll(2), and epoll(7) did not respect the SO_RCVLOWAT setting on Linux, and indicated a socket as readable when even a single byte of data was available. A subsequent read from the socket would then block until SO_RCVLOWAT bytes are available. Since Linux 2.6.28, select(2), poll(2), and epoll(7) indicate a socket as readable only if at least SO_RCVLOWAT bytes are available.
Specify the receiving or sending timeouts until reporting an error. The argument is a struct timeval. If an input or output function blocks for this period of time, and data has been sent or received, the return value of that function will be the amount of data transferred; if no data has been transferred and the timeout has been reached, then -1 is returned with errno set to EAGAIN or EWOULDBLOCK, or EINPROGRESS (for connect(2)) just as if the socket was specified to be nonblocking. If the timeout is set to zero (the default), then the operation will never timeout. Timeouts only have effect for system calls that perform socket I/O (e.g., accept(2), connect(2), read(2), recvmsg(2), send(2), sendmsg(2)); timeouts have no effect for select(2), poll(2), epoll_wait(2), and so on.
Указать, что правила проверки адресов, передаваемых с помощью вызова bind(2), должны позволять повторное использование локальных адресов. В случае с сокетами AF_INET это означает, что сокет может быть привязан (bind), за исключением случаев, когда активному слушающему сокету присвоен адрес. Если слушающий сокет привязан к INADDR_ANY с определённым портом, то к этому порту невозможно будет привязать любой локальный адрес. Аргументом является целочисленный логический флаг.
Разрешить многократную привязку сокета AF_INET или AF_INET6 к одинаковому адресу сокета. Данный параметр должен быть указан на каждом сокете (включая первый сокет) до вызова bind(2). Чтобы предотвратить захват порта все привязки процессов к одному адресу должны иметь один эффективный UID. Данный параметр можно применять к сокетам TCP и UDP.
Для сокетов TCP данный параметр позволяет accept(2) распределить нагрузку в многонитевом сервере, назначая разные слушатели сокета в каждой нити. Это улучшает распределение нагрузки по сравнении с обычными методами, например с одной принимающей нитью accept(2), которая распределяет соединения, или с несколькими нитями, которые конкурируют за accept(2) единого сокета.
Для сокетов UDP использование данного параметра может улучшить распределение входящих датаграмм по нескольким процессам (или нитям) по сравнении с обычным методом с несколькими процессами, которые конкурируют при приёме датаграмм из единого сокета.
Указывает, что к принятым skbs должно быть прикреплено вспомогательное сообщение (cmsg) с беззнаковым 32-битным значением, которое обозначает количество пакетов, отброшенных сокетом с момента его создания.
When this option is set on a socket, an error condition on a socket causes notification not only via the exceptfds set of select(2). Similarly, poll(2) also returns a POLLPRI whenever an POLLERR event is returned.
Background: this option was added when waking up on an error condition occurred only via the readfds and writefds sets of select(2). The option was added to allow monitoring for error conditions via the exceptfds argument without simultaneously having to receive notifications (via readfds) for regular data that can be read from the socket. After changes in Linux 4.16, the use of this flag to achieve the desired notifications is no longer necessary. This option is nevertheless retained for backwards compatibility.
Задать или считать максимальный размер буфера отправки сокета (в байтах). Ядро удваивает это значение (для пространства под учёт ресурсов (bookkeeping overhead)) при установке этого параметра с помощью setsockopt(2), и это удвоенное значение возвращается getsockopt(2). Значение по умолчанию устанавливается через файл /proc/sys/net/core/wmem_default, а максимальное возможное значение устанавливается через файл /proc/sys/net/core/wmem_max. Минимальное (удвоенное) значение для этого параметра равно 2048.
С помощью этого параметра сокета привилегированный (CAP_NET_ADMIN) процесс может выполнить ту же работу, что и с помощью SO_SNDBUF, но возможно превысить ограничение wmem_max.
Enable or disable the receiving of the SO_TIMESTAMP control message. The timestamp control message is sent with level SOL_SOCKET and a cmsg_type of SCM_TIMESTAMP. The cmsg_data field is a struct timeval indicating the reception time of the last packet passed to the user in this call. See cmsg(3) for details on control messages.
Enable or disable the receiving of the SO_TIMESTAMPNS control message. The timestamp control message is sent with level SOL_SOCKET and a cmsg_type of SCM_TIMESTAMPNS. The cmsg_data field is a struct timespec indicating the reception time of the last packet passed to the user in this call. The clock used for the timestamp is CLOCK_REALTIME. See cmsg(3) for details on control messages.
A socket cannot mix SO_TIMESTAMP and SO_TIMESTAMPNS: the two modes are mutually exclusive.
Получить тип сокета в виде целого числа (например, SOCK_STREAM). Этот параметр сокета доступен только для чтения.
Задаёт приблизительный интервал в микросекундах для задержки опроса при блокирующем приёме при отсутствии данных. Увеличение этого значения требует мандата CAP_NET_ADMIN. Значение по умолчанию данного параметра управляется через файл /proc/sys/net/core/busy_read.
Значение в файле /proc/sys/net/core/busy_poll определяет как долго select(2) и poll(2) задержат опрос, если они работают с сокетами с установленным SO_BUSY_POLL и отсутствуют события для извещения.
В обоих случаях опрос с задержкой (busy polling) будет завершён только, когда сокет примет все данные из сетевого устройства, которое поддерживает этот параметр.
Хотя опрос с задержкой может уменьшить время ожидания в некоторых приложениях, этим нужно пользоваться с осторожностью, так как его использование увеличит нагрузку на ЦП и энергопотребление.

Сигналы

При записи в сокет, ориентированный на соединение, который был выключен (shutdown) локальной или удалённой стороной, записывающему процессу посылается сигнал SIGPIPE и возвращается EPIPE. Сигнал не посылается, если вызов записи был сделан с флагом MSG_NOSIGNAL.

Если был произведён вызов fcntl(2) с FIOSETOWN или ioctl(2) с SIOCSPGRP, то при появлении событий ввода/вывода посылается сигнал SIGIO. Для определения сокета, в котором произошло событие, в обработчике можно воспользоваться вызовом poll(2) или select(2). Альтернативным способом (в Linux 2.2) является установка сигнала реального времени с помощью вызова fcntl(2) с F_SETSIG; будет вызван обработчик сигнала реального времени и в его структуре siginfo_t поле si_fd будет содержать значение файлового дескриптора. Дополнительная информация приведена в fcntl(2).

В некоторых случаях (например, при наличии доступа нескольких процессов к одному сокету) условие, вызвавшее SIGIO, может исчезнуть на момент обработки процессом сигнала. Если это происходит, то процесс должен подождать сигнала ещё какое-то время, так как Linux снова пошлёт его позже.

Интерфейс /proc

Основные сетевые параметры сокета доступны через файлы в каталоге /proc/sys/net/core/.

устанавливаемый по умолчанию размер буфера приёма сокета (в байтах)
максимальный размер буфера приёма сокета (в байтах), который может установить пользователь с помощью параметра сокета SO_RCVBUF
устанавливаемый по умолчанию размер буфера отправки сокета (в байтах)
максимальный размер буфера отправки сокета (в байтах), который может установить пользователь с помощью параметра сокета SO_SNDBUF
фильтр корзины токенов, используемый для ограничения нагрузки сети предупреждающими сообщениями, вызванными внешними сетевыми событиями
максимальное количество пакетов в глобальной входящей очереди
максимальная длина вспомогательных данных и управляющих данных пользователя, таких, как iovec (для каждого сокета)

Вызовы ioctl

Следующие операции доступны через ioctl(2):


error = ioctl(ip_socket, ioctl_type, &value_result);

Return a struct timeval with the receive timestamp of the last packet passed to the user. This is useful for accurate round trip time measurements. See setitimer(2) for a description of struct timeval. This ioctl should be used only if the socket options SO_TIMESTAMP and SO_TIMESTAMPNS are not set on the socket. Otherwise, it returns the timestamp of the last packet that was received while SO_TIMESTAMP and SO_TIMESTAMPNS were not set, or it fails if no such packet has been received, (i.e., ioctl(2) returns -1 with errno set to ENOENT).
Назначает процесс или группу процессов, которым будут посылаться сигналы SIGIO или SIGURG при появлении возможности ввода-вывода или при появлении срочных данных. Аргумент является указателем на pid_t. Дополнительная информация приведена в описании на F_SETOWN в fcntl(2).
Изменяет флаг O_ASYNC для включения или отключения асинхронного режима ввода/вывода сокета. В асинхронном режиме при появлении событий ввода/вывода посылается сигнал SIGIO или сигнал, установленный с помощью F_SETSIG.
Аргументом является целочисленный логический флаг. Данная операция аналогична вызову fcntl(2) с установленным флагом O_ASYNC.
Возвращает процесс или группу процессов, получающих сигналы SIGIO или SIGURG. Если такой процесс не задан, то возвращается нулевое значение.

Возможные операции fcntl(2):

То же, что и вызов ioctl(2) SIOCGPGRP.
То же, что и вызов ioctl(2) SIOCSPGRP.

ВЕРСИИ

Параметр SO_BINDTODEVICE появился в Linux 2.0.30. Параметр SO_PASSCRED появился в Linux 2.2. Интерфейсы /proc появились в Linux 2.2. Параметры SO_RCVTIMEO и SO_SNDTIMEO начали поддерживаться в Linux 2.3.41. До этого, времена ожидания были жёстко прописаны в настройках протокола и недоступны для чтения или записи.

ПРИМЕЧАНИЯ

В Linux предполагается, что половина буфера приёма/передачи используется для размещения внутренних структур ядра; поэтому соответствующие файлы /proc в два раза больше, чем кажутся.

В Linux разрешено повторное использование порта с параметром SO_REUSEADDR только, когда этот параметр установлен и в программе, уже выполнившей bind(2) и в программе, которая хочет использовать порт. Такое поведение отличается от некоторых реализаций (например, FreeBSD), в которых только последняя программа должна устанавливать параметр SO_REUSEADDR. Обычно, это отличие незаметно, так как, например, в серверных программах всегда устанавливают этот параметр.

СМОТРИТЕ ТАКЖЕ

wireshark(1), bpf(2), connect(2), getsockopt(2), setsockopt(2), socket(2), pcap(3), address_families(7), capabilities(7), ddp(7), ip(7), ipv6(7), packet(7), tcp(7), udp(7), unix(7), tcpdump(8)

ПЕРЕВОД

Русский перевод этой страницы руководства разработал(и) Alexander Golubev <fatzer2@gmail.com>, Azamat Hackimov <azamat.hackimov@gmail.com>, Hotellook, Nikita <zxcvbnm3230@mail.ru>, Spiros Georgaras <sng@hellug.gr>, Vladislav <ivladislavefimov@gmail.com>, Yuri Kozlov <yuray@komyakino.ru>, Иван Павлов <pavia00@gmail.com> и Kirill Rekhov <krekhov.dev@gmail.com>

Этот перевод является свободной программной документацией; он распространяется на условиях общедоступной лицензии GNU (GNU General Public License - GPL, https://www.gnu.org/licenses/gpl-3.0.html версии 3 или более поздней) в отношении авторского права, но БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ.

Если вы обнаружите какие-либо ошибки в переводе этой страницы руководства, пожалуйста, сообщите об этом разработчику(ам) по его(их) адресу(ам) электронной почты или по адресу списка рассылки русских переводчиков.

2 мая 2024 г. Справочные страницы Linux 6.9.1