mlpack_dbscan(1) | User Commands | mlpack_dbscan(1) |
NAME¶
mlpack_dbscan - dbscan clustering
SYNOPSIS¶
mlpack_dbscan -i unknown [-e double] [-m int] [-N bool] [-s string] [-S bool] [-t string] [-V bool] [-a unknown] [-C unknown] [-h -v]
DESCRIPTION¶
This program implements the DBSCAN algorithm for clustering using accelerated tree-based range search. The type of tree that is used may be parameterized, or brute-force range search may also be used.
The input dataset to be clustered may be specified with the '--input_file (-i)' parameter; the radius of each range search may be specified with the ’--epsilon (-e)' parameters, and the minimum number of points in a cluster may be specified with the '--min_size (-m)' parameter.
The '--assignments_file (-a)' and '--centroids_file (-C)' output parameters may be used to save the output of the clustering. '--assignments_file (-a)' contains the cluster assignments of each point, and '--centroids_file (-C)' contains the centroids of each cluster.
The range search may be controlled with the '--tree_type (-t)', '--single_mode (-S)', and '--naive (-N)' parameters. '--tree_type (-t)' can control the type of tree used for range search; this can take a variety of values: 'kd', 'r', ’r-star', 'x', 'hilbert-r', 'r-plus', 'r-plus-plus', 'cover', 'ball'. The ’--single_mode (-S)' parameter will force single-tree search (as opposed to the default dual-tree search), and ''--naive (-N)' will force brute-force range search.
An example usage to run DBSCAN on the dataset in 'input.csv' with a radius of 0.5 and a minimum cluster size of 5 is given below:
$ mlpack_dbscan --input_file input.csv --epsilon 0.5 --min_size 5
REQUIRED INPUT OPTIONS¶
- --input_file (-i) [unknown]
- Input dataset to cluster.
OPTIONAL INPUT OPTIONS¶
- --epsilon (-e) [double]
- Radius of each range search. Default value 1.
- --help (-h) [bool]
- Default help info.
- --info [string]
- Print help on a specific option. Default value ''.
- --min_size (-m) [int]
- Minimum number of points for a cluster. Default value 5.
- --naive (-N) [bool]
- If set, brute-force range search (not tree-based) will be used.
- --selection_type (-s) [string]
- If using point selection policy, the type of selection to use ('ordered', 'random'). Default value 'ordered'.
- --single_mode (-S) [bool]
- If set, single-tree range search (not dual-tree) will be used.
- --tree_type (-t) [string]
- If using single-tree or dual-tree search, the type of tree to use ('kd', 'r', 'r-star', 'x', 'hilbert-r', 'r-plus', 'r-plus-plus', 'cover', 'ball'). Default value 'kd'.
- --verbose (-v) [bool]
- Display informational messages and the full list of parameters and timers at the end of execution.
- --version (-V) [bool]
- Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS¶
- --assignments_file (-a) [unknown]
- Output matrix for assignments of each point.
- --centroids_file (-C) [unknown]
- Matrix to save output centroids to.
ADDITIONAL INFORMATION¶
For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your distribution of mlpack.
07 January 2025 | mlpack-4.5.1 |