table of contents
MPI_PACK_EXTERNAL(3) | Open MPI | MPI_PACK_EXTERNAL(3) |
MPI_Pack_external — Writes data to a portable format
SYNTAX¶
C Syntax¶
#include <mpi.h> int MPI_Pack_external(const char *datarep, const void *inbuf,
int incount, MPI_Datatype datatype,
void *outbuf, MPI_Aint outsize,
MPI_Aint *position)
Fortran Syntax¶
USE MPI ! or the older form: INCLUDE 'mpif.h' MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE,
OUTBUF, OUTSIZE, POSITION, IERROR)
INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION
CHARACTER*(*) DATAREP
<type> INBUF(*), OUTBUF(*)
Fortran 2008 Syntax¶
USE mpi_f08 MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize,
position, ierror)
CHARACTER(LEN=*), INTENT(IN) :: datarep
TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf
TYPE(*), DIMENSION(..) :: outbuf
INTEGER, INTENT(IN) :: incount
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: outsize
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
INPUT PARAMETERS¶
- datarep: Data representation (string).
- inbuf: Input buffer start (choice).
- incount: Number of input data items (integer).
- datatype: Datatype of each input data item (handle).
- outsize: Output buffer size, in bytes (integer).
INPUT/OUTPUT PARAMETER¶
- •
- position: Current position in buffer, in bytes (integer).
OUTPUT PARAMETERS¶
- outbuf: Output buffer start (choice).
- ierror: Fortran only: Error status (integer).
DESCRIPTION¶
MPI_Pack_external packs data into the external32 format, a universal data representation defined by the MPI Forum. This format is useful for exchanging data between MPI implementations, or when writing data to a file.
The input buffer is specified by inbuf, incount and datatype, and may be any communication buffer allowed in MPI_Send. The output buffer outbuf must be a contiguous storage area containing outsize bytes.
The input value of position is the first position in outbuf to be used for packing (measured in bytes, not elements, relative to the start of the buffer). When the function returns, position is incremented by the size of the packed message, so that it points to the first location in outbuf following the packed message. This way it may be used as input to a subsequent call to MPI_Pack_external.
Example: An example using MPI_Pack_external:
int position, i; double msg[5]; char buf[1000]; ... MPI_Comm_rank(MPI_COMM_WORLD, &myrank); if (myrank == 0) { /* SENDER CODE */
position = 0;
i = 5; /* number of doubles in msg[] */
MPI_Pack_external("external32", &i, 1, MPI_INT,
buf, 1000, &position);
MPI_Pack_external("external32", &msg, i, MPI_DOUBLE,
buf, 1000, &position);
MPI_Send(buf, position, MPI_BYTE, 1, 0,
MPI_COMM_WORLD); } else { /* RECEIVER CODE */
MPI_Recv(buf, 1, MPI_BYTE, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
MPI_Unpack_external("external32", buf, 1000,
MPI_INT, &i, 1, &position);
MPI_Unpack_external("external32", buf, 1000,
MPI_DOUBLE, &msg, i, &position); }
NOTES¶
The datarep argument specifies the data format. The only valid value in the current version of MPI is “external32”. The argument is provided for future extensibility.
To understand the behavior of pack and unpack, it is convenient to think of the data part of a message as being the sequence obtained by concatenating the successive values sent in that message. The pack operation stores this sequence in the buffer space, as if sending the message to that buffer. The unpack operation retrieves this sequence from buffer space, as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or sscanf in C for a similar function.)
Several messages can be successively packed into one packing unit. This is effected by several successive related calls to MPI_Pack_external, where the first call provides position=0, and each successive call inputs the value of position that was output by the previous call, along with the same values for outbuf and outcount. This packing unit now contains the equivalent information that would have been stored in a message by one send call with a send buffer that is the “concatenation” of the individual send buffers.
A packing unit can be sent using type MPI_BYTE. Any point-to-point or collective communication function can be used to move the sequence of bytes that forms the packing unit from one process to another. This packing unit can now be received using any receive operation, with any datatype. (The type-matching rules are relaxed for messages sent with type MPI_BYTE.)
A packing unit can be unpacked into several successive messages. This is effected by several successive related calls to MPI_Unpack_external, where the first call provides position=0, and each successive call inputs the value of position that was output by the previous call, and the same values for inbuf and insize.
The concatenation of two packing units is not necessarily a packing unit; nor is a substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two packing units and then unpack the result as one packing unit; nor can one unpack a substring of a packing unit as a separate packing unit. Each packing unit that was created by a related sequence of pack calls must be unpacked as a unit by a sequence of related unpack calls.
ERRORS¶
Almost all MPI routines return an error value; C routines as the return result of the function and Fortran routines in the last argument.
Before the error value is returned, the current MPI error handler associated with the communication object (e.g., communicator, window, file) is called. If no communication object is associated with the MPI call, then the call is considered attached to MPI_COMM_SELF and will call the associated MPI error handler. When MPI_COMM_SELF is not initialized (i.e., before MPI_Init/MPI_Init_thread, after MPI_Finalize, or when using the Sessions Model exclusively) the error raises the initial error handler. The initial error handler can be changed by calling MPI_Comm_set_errhandler on MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI argument to mpiexec or info key to MPI_Comm_spawn/MPI_Comm_spawn_multiple. If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error handler is called for all other MPI functions.
Open MPI includes three predefined error handlers that can be used:
- MPI_ERRORS_ARE_FATAL Causes the program to abort all connected MPI processes.
- MPI_ERRORS_ABORT An error handler that can be invoked on a communicator, window, file, or session. When called on a communicator, it acts as if MPI_Abort was called on that communicator. If called on a window or file, acts as if MPI_Abort was called on a communicator containing the group of processes in the corresponding window or file. If called on a session, aborts only the local process.
- MPI_ERRORS_RETURN Returns an error code to the application.
MPI applications can also implement their own error handlers by calling:
- MPI_Comm_create_errhandler then MPI_Comm_set_errhandler
- MPI_File_create_errhandler then MPI_File_set_errhandler
- MPI_Session_create_errhandler then MPI_Session_set_errhandler or at MPI_Session_init
- MPI_Win_create_errhandler then MPI_Win_set_errhandler
Note that MPI does not guarantee that an MPI program can continue past an error.
See the MPI man page for a full list of MPI error codes.
See the Error Handling section of the MPI-3.1 standard for more information.
SEE ALSO:
- MPI_Pack_external_size
- MPI_Send
- MPI_Unpack_external
- sscanf(3C)
COPYRIGHT¶
2003-2024, The Open MPI Community
December 2, 2024 |