table of contents
LINALG(3pm) | User Contributed Perl Documentation | LINALG(3pm) |
NAME¶
PDL::GSL::LINALG - PDL interface to linear algebra routines in GSL
SYNOPSIS¶
use PDL::LiteF; use PDL::MatrixOps; # for 'x' use PDL::GSL::LINALG; my $A = pdl [ [0.18, 0.60, 0.57, 0.96], [0.41, 0.24, 0.99, 0.58], [0.14, 0.30, 0.97, 0.66], [0.51, 0.13, 0.19, 0.85], ]; my $B = sequence(2,4); # column vectors LU_decomp(my $lu=$A->copy, my $p=null, my $signum=null); # transpose so first dim means is vector, higher dims broadcast LU_solve($lu, $p, $B->transpose, my $x=null); $x = $x->inplace->transpose; # now can be matrix-multiplied
DESCRIPTION¶
This is an interface to the linear algebra package present in the GNU Scientific Library. Functions are named as in GSL, but with the initial "gsl_linalg_" removed. They are provided in both real and complex double precision.
Currently only LU decomposition interfaces here. Pull requests welcome! #line 60 "LINALG.pm"
FUNCTIONS¶
LU_decomp¶
Signature: ([io,phys]A(n,m); indx [o,phys]ipiv(p=CALC($PDL(A)->ndims > 1 ? PDLMIN($PDL(A)->dims[0], $PDL(A)->dims[1]) : 1)); int [o,phys]signum())
LU decomposition of the given (real or complex) matrix.
LU_decomp ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
LU_solve¶
Signature: ([phys]LU(n,m); indx [phys]ipiv(p); [phys]B(n); [o,phys]x(n))
Solve "A x = B" using the LU and permutation from "LU_decomp", real or complex.
LU_solve ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
LU_det¶
Signature: ([phys]LU(n,m); int [phys]signum(); [o]det())
Find the determinant from the LU decomp.
LU_det ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
solve_tridiag¶
Signature: ([phys]diag(n); [phys]superdiag(n); [phys]subdiag(n); [phys]B(n); [o,phys]x(n))
Solve "A x = B" where A is a tridiagonal system. Real only, because GSL does not have a complex function.
solve_tridiag ignores the bad-value flag of the input ndarrays. It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.
SEE ALSO¶
PDL
The GSL documentation for linear algebra is online at <https://www.gnu.org/software/gsl/doc/html/linalg.html>
2024-11-04 | perl v5.40.0 |