NAME¶
efence - Electric Fence Malloc Debugger
SYNOPSIS¶
#include <stdlib.h>
void * malloc (size_t size);
void free (void *ptr);
void * realloc (void *ptr, size_t size);
void * calloc (size_t nelem, size_t elsize);
void * memalign (size_t alignment, size_t size);
int posix_memalign (void ** memptr, size_t alignment, size_t size);
void * valloc (size_t size);
extern int EF_DISABLE_BANNER;
extern int EF_ALIGNMENT;
extern int EF_PROTECT_BELOW;
extern int EF_PROTECT_FREE;
extern int EF_ALLOW_MALLOC_0;
extern int EF_FILL;
DESCRIPTION¶
Electric Fence helps you detect two common programming bugs: software
that overruns the boundaries of a malloc() memory allocation, and software
that touches a memory allocation that has been released by free(). Unlike
other malloc() debuggers, Electric Fence will detect
read accesses as
well as writes, and it will pinpoint the exact instruction that causes an
error. It has been in use at Pixar since 1987, and at many other sites for
years.
Electric Fence uses the virtual memory hardware of your computer to place an
inaccessible memory page immediately after (or before, at the user's option)
each memory allocation. When software reads or writes this inaccessible page,
the hardware issues a segmentation fault, stopping the program at the
offending instruction. It is then trivial to find the erroneous statement
using your favorite debugger. In a similar manner, memory that has been
released by free() is made inaccessible, and any code that touches it will get
a segmentation fault.
Simply linking your application with libefence.a will allow you to detect most,
but not all, malloc buffer overruns and accesses of free memory. If you want
to be reasonably sure that you've found
all bugs of this type, you'll
have to read and understand the rest of this man page.
USAGE¶
Link your program with the library
libefence.a . Make sure you are
not linking with
-lmalloc, -lmallocdebug, or with other
malloc-debugger or malloc-enhancer libraries. You can only use one at a time.
If your system administrator has installed Electric Fence for public use,
you'll be able to use the
-lefence argument to the linker, otherwise
you'll have to put the path-name for
libefence.a in the linker's
command line. You can also use dynamic linking. If you're using a Bourne
shell, the statement
export LD_PRELOAD=libefence.so.0.0 will cause
Electric Fence to be loaded to run all dynamic executables. The command
ef command runs a single command under Electric Fence.
Some systems will require special arguments to the linker to assure that you are
using the Electric Fence malloc() and not the one from your C library.
Run your program
using a debugger. It's easier to work this way than to
create a
core file and post-mortem debug it. Electric Fence can create
huge core files, and some operating systems will thus take minutes
simply to dump core! Some operating systems will not create usable core files
from programs that are linked with Electric Fence. If your program has one of
the errors detected by Electric Fence, it will get a segmentation fault
(SIGSEGV) at the offending instruction. Use the debugger to locate the
erroneous statement, and repair it.
GLOBAL AND ENVIRONMENT VARIABLES¶
Electric Fence has six configuration switches that can be enabled via the shell
environment, or by setting the value of global integer variables using a
debugger. These switches change what bugs Electric Fence will detect, so it's
important that you know how to use them.
- EF_DISABLE_BANNER
- This is an integer which if nonzero specifies that the
usual Electric Fence banner and copyright notice should not be printed.
This is provided for certain circumstances where the banner can be
annoying (eg, running a regression test suite that also monitors stderr).
Note that you should almost certainly not set this in your program,
because then you might leave Electric Fence linked into the production
version, which would be very bad.
- EF_ALIGNMENT
- This is an integer that specifies the alignment for any
memory allocations that will be returned by malloc(), calloc(), and
realloc(). The value is specified in bytes, thus a value of 4 will cause
memory to be aligned to 32-bit boundaries unless your system doesn't have
a 8-bit characters. EF_ALIGNMENT is set to sizeof(int) by default, since
that is generally the word-size of your CPU. If your program requires that
allocations be aligned to 64-bit boundaries and you have a 32-bit
int you'll have to set this value to 8. This is the case when
compiling with the -mips2 flag on MIPS-based systems such as those
from SGI. The memory allocation that is returned by Electric Fence
malloc() is aligned using the value in EF_ALIGNMENT, and its size the
multiple of that value that is greater than or equal to the
requested size. For this reason, you will sometimes want to set
EF_ALIGNMENT to 0 (no alignment), so that you can detect overruns of less
than your CPU's word size. Be sure to read the section WORD-ALIGNMENT
AND OVERRUN DETECTION in this manual page before you try this. To
change this value, set EF_ALIGNMENT in the shell environment to an integer
value, or assign to the global integer variable EF_ALIGNMENT using a
debugger.
- EF_PROTECT_BELOW
- Electric Fence usually places an inaccessible page
immediately after each memory allocation, so that software that runs past
the end of the allocation will be detected. Setting EF_PROTECT_BELOW to 1
causes Electric Fence to place the inaccessible page before the
allocation in the address space, so that under-runs will be detected
instead of over-runs. When EF_PROTECT_BELOW is set, the EF_ALIGNMENT
parameter is ignored. All allocations will be aligned to
virtual-memory-page boundaries, and their size will be the exact size that
was requested. To change this value, set EF_PROTECT_BELOW in the shell
environment to an integer value, or assign to the global integer variable
EF_PROTECT_BELOW using a debugger.
- EF_PROTECT_FREE
- When EF_PROTECT_FREE is not set (i. e. set to 0), Electric
Fence returns free memory to a pool and only checks accesses to it until
it is reallocated. If you suspect that a program may be touching free
memory, set EF_PROTECT_FREE to 1. This will cause Electric Fence to never
re-allocate memory once it has been freed, so that any access to free
memory will be detected. Some programs will use tremendous amounts of
memory when this parameter is set. To change this value, set
EF_PROTECT_FREE in the shell environment to an integer value, or assign to
the global integer variable EF_PROTECT_FREE using a debugger.
- EF_ALLOW_MALLOC_0
- By default, Electric Fence traps calls to malloc() with a
size of zero, because they are often the result of a software bug. If
EF_ALLOW_MALLOC_0 is non-zero, the software will not trap calls to
malloc() with a size of zero. To change this value, set EF_ALLOW_MALLOC_0
in the shell environment to an integer value, or assign to the global
integer variable EF_ALLOW_MALLOC_0 using a debugger.
- EF_FILL
- When set to a value between 0 and 255, every byte of
allocated memory is initialized to that value. This can help detect reads
of uninitialized memory. When set to -1, some memory is filled with zeroes
(the operating system default on most systems) and some memory will retain
the values written to it during its last use.
WORD-ALIGNMENT AND OVERRUN DETECTION¶
There is a conflict between the alignment restrictions that malloc() operates
under and the debugging strategy used by Electric Fence. When detecting
overruns, Electric Fence malloc() allocates two or more virtual memory pages
for each allocation. The last page is made inaccessible in such a way that any
read, write, or execute access will cause a segmentation fault. Then, Electric
Fence malloc() will return an address such that the first byte after the end
of the allocation is on the inaccessible page. Thus, any overrun of the
allocation will cause a segmentation fault.
It follows that the address returned by malloc() is the address of the
inaccessible page minus the size of the memory allocation. Unfortunately,
malloc() is required to return
word-aligned allocations, since many
CPUs can only access a word when its address is aligned. The conflict happens
when software makes a memory allocation using a size that is not a multiple of
the word size, and expects to do word accesses to that allocation. The
location of the inaccessible page is fixed by hardware at a word-aligned
address. If Electric Fence malloc() is to return an aligned address, it must
increase the size of the allocation to a multiple of the word size. In
addition, the functions memalign() and valloc() must honor explicit
specifications on the alignment of the memory allocation, and this, as well
can only be implemented by increasing the size of the allocation. Thus, there
will be situations in which the end of a memory allocation contains some
padding space, and accesses of that padding space will not be detected, even
if they are overruns.
Electric Fence provides the variable EF_ALIGNMENT so that the user can control
the default alignment used by malloc(), calloc(), and realloc(). To debug
overruns as small as a single byte, you can set EF_ALIGNMENT to zero. This
will result in Electric Fence malloc() returning unaligned addresses for
allocations with sizes that are not a multiple of the word size. This is not a
problem in most cases, because compilers must pad the size of objects so that
alignment restrictions are honored when storing those objects in arrays. The
problem surfaces when software allocates odd-sized buffers for objects that
must be word-aligned. One case of this is software that allocates a buffer to
contain a structure and a string, and the string has an odd size (this example
was in a popular TIFF library). If word references are made to un-aligned
buffers, you will see a bus error (SIGBUS) instead of a segmentation fault.
The only way to fix this is to re-write the offending code to make byte
references or not make odd-sized allocations, or to set EF_ALIGNMENT to the
word size.
Another example of software incompatible with EF_ALIGNMENT < word-size is the
strcmp() function and other string functions on SunOS (and probably Solaris),
which make word-sized accesses to character strings, and may attempt to access
up to three bytes beyond the end of a string. These result in a segmentation
fault (SIGSEGV). The only way around this is to use versions of the string
functions that perform byte references instead of word references.
INSTRUCTIONS FOR DEBUGGING YOUR PROGRAM¶
- 1.
- Link with libefence.a as explained above.
- 2.
- Run your program in a debugger and fix any overruns or
accesses to free memory.
- 3.
- Quit the debugger.
- 4.
- Set EF_PROTECT_BELOW = 1 in the shell environment.
- 5.
- Repeat step 2, this time repairing underruns if they
occur.
- 6.
- Quit the debugger.
- 7.
- Read the restrictions in the section on WORD-ALIGNMENT
AND OVERRUN DETECTION. See if you can set EF_ALIGNMENT to 0 and repeat
step 2. Sometimes this will be too much work, or there will be problems
with library routines for which you don't have the source, that will
prevent you from doing this.
MEMORY USAGE AND EXECUTION SPEED¶
Since Electric Fence uses at least two virtual memory pages for each of its
allocations, it's a terrible memory hog. I've sometimes found it necessary to
add a swap file using
swapon(8) so that the system would have enough virtual
memory to debug my program. Also, the way we manipulate memory results in
various cache and translation buffer entries being flushed with each call to
malloc or free. The end result is that your program will be much slower and
use more resources while you are debugging it with Electric Fence.
Don't leave libefence.a linked into production software! Use it only for
debugging.
AUTHOR¶
Bruce Perens
WARNINGS¶
I have tried to do as good a job as I can on this software, but I doubt that it
is even theoretically possible to make it bug-free. This software has no
warranty. It will not detect some bugs that you might expect it to detect, and
will indicate that some non-bugs are bugs.
LICENSE¶
Copyright 1987-1999 Bruce Perens. All rights reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, Version 2, as published by the
Free Software Foundation. A copy of this license is distributed with this
software in the file "COPYING".
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. Read the file "COPYING" for more details.
Bruce Perens
1563 Solano Ave. #349
Berkeley, CA 94707
Telephone: 510-526-1165
Internet: bruce@perens.com
FILES¶
/dev/zero: Source of memory pages (via
mmap(2)).
SEE ALSO¶
malloc(3),
mmap(2),
mprotect(2),
swapon(8)
DIAGNOSTICS¶
Segmentation Fault: Examine the offending statement for violation of the
boundaries of a memory allocation.
Bus Error: See the section on
WORD-ALIGNMENT AND OVERRUN DETECTION. in
this manual page.
BUGS¶
My explanation of the alignment issue could be improved.
Some Sun systems running SunOS 4.1 were reported to signal an access to a
protected page with
SIGBUS rather than
SIGSEGV, I suspect this
is an undocumented feature of a particular Sun hardware version, not just the
operating system. On these systems, eftest will fail with a bus error until
you modify the Makefile to define
PAGE_PROTECTION_VIOLATED_SIGNAL as
SIGBUS.
There are, without doubt, other bugs and porting issues. Please contact me via
e-mail if you have any bug reports, ideas, etc.
WHAT'S BETTER¶
Purify does a much more thorough job than Electric Fence, and does not
have the huge memory overhead.
Checkergcc, a modified version of the
GNU C Compiler that instruments all memory references, is available on Linux
systems and where GCC is used. It performs some of the same tasks as Purify,
but only on code that it has compiled.